BalancEdit: Dynamically Balancing the Generality-Locality Trade-off in Multi-modal Model Editing
- URL: http://arxiv.org/abs/2505.01343v2
- Date: Mon, 09 Jun 2025 21:51:05 GMT
- Title: BalancEdit: Dynamically Balancing the Generality-Locality Trade-off in Multi-modal Model Editing
- Authors: Dongliang Guo, Mengxuan Hu, Zihan Guan, Thomas Hartvigsen, Sheng Li,
- Abstract summary: We introduce the concept of the generality-locality trade-off in multi-modal model editing.<n>We propose BalancEdit, a novel method for balanced model editing.<n>Our results confirm the effectiveness of BalancEdit, demonstrating minimal trade-offs while maintaining robust editing capabilities.
- Score: 18.40863022476747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large multi-modal models inevitably decay over time as facts update and previously learned information becomes outdated. Traditional approaches such as fine-tuning are often impractical for updating these models due to their size and complexity. Instead, direct knowledge editing within the models presents a more viable solution. Current model editing techniques, however, typically overlook the unique influence ranges of different facts, leading to compromised model performance in terms of both generality and locality. To address this issue, we introduce the concept of the generality-locality trade-off in multi-modal model editing. We develop a new model editing dataset named OKEDIT, specifically designed to effectively evaluate this trade-off. Building on this foundation, we propose \textbf{BalancEdit}, a novel method for balanced model editing that dynamically achieves an optimal balance between generality and locality. BalancEdit utilizes a unique mechanism that generates both positive and negative samples for each fact to accurately determine its influence scope and incorporates these insights into the model's latent space using a discrete, localized codebook of edits, without modifying the underlying model weights. To our knowledge, this is the first approach explicitly addressing the generality-locality trade-off in multi-modal model editing. Our comprehensive results confirm the effectiveness of BalancEdit, demonstrating minimal trade-offs while maintaining robust editing capabilities. Our code and dataset are available at https://github.com/donglgcn/BalancEdit/tree/MMOKVQA.
Related papers
- Model Merging for Knowledge Editing [53.799891745131724]
Large Language Models (LLMs) require continuous updates to maintain accurate and current knowledge as the world evolves.<n>Existing knowledge editing approaches offer various solutions for knowledge updating, but they often struggle with sequential editing scenarios.<n>This paper proposes a two-stage framework combining robust supervised fine-tuning (R-SFT) with model merging for knowledge editing.
arXiv Detail & Related papers (2025-06-14T07:42:39Z) - One for All: Update Parameterized Knowledge Across Multiple Models [35.137065486616805]
Large language models (LLMs) encode vast world knowledge but struggle to stay up-to-date, often leading to errors and hallucinations.<n> Knowledge editing offers an efficient alternative to retraining, enabling targeted modifications by updating specific model parameters.<n>We propose OnceEdit, a novel ensemble-based approach that employs a plug-in model as the editing module.
arXiv Detail & Related papers (2025-06-01T03:48:54Z) - Neuron-Level Sequential Editing for Large Language Models [19.324852774144752]
We introduce textbfNeuron-level textbfSequential textbfEditing (NSE) for supporting sequential model editing.
Specifically, we optimize the target layer's hidden states using the model's original weights to prevent model failure.
Our experiments demonstrate that NSE significantly outperforms current modifying parameters model editing methods.
arXiv Detail & Related papers (2024-10-05T05:52:22Z) - Better Call SAUL: Fluent and Consistent Language Model Editing with Generation Regularization [48.07144492109635]
Large language models need to be updated regularly.
Model editing is challenging as it might also affect knowledge that is unrelated to the new data.
We propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization.
arXiv Detail & Related papers (2024-10-03T12:28:13Z) - ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA [55.697627106315004]
Large language models (LLMs) require model editing to efficiently update specific knowledge within them and avoid factual errors.<n>Previous approaches manage sequential edits by freezing original parameters and discretely allocating new parameters for each knowledge update.<n>We propose ELDER, a novel approach to create a continuous association between data and adapters.
arXiv Detail & Related papers (2024-08-19T02:27:00Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue [122.20016030723043]
We evaluate the side effects of model editing on large language models (LLMs)
Our analysis reveals that the side effects are caused by model editing altering the original model weights excessively.
To mitigate this, a method named RECT is proposed to regularize the edit update weights.
arXiv Detail & Related papers (2024-01-09T18:03:15Z) - Edit at your own risk: evaluating the robustness of edited models to
distribution shifts [0.0]
We investigate how model editing affects the general robustness of a model, as well as the robustness of the specific behavior targeted by the edit.
We find that edits tend to reduce general robustness, but that the degree of degradation depends on the editing algorithm and layers chosen.
Motivated by these observations we introduce a new model editing algorithm, 1-layer (1-LI), which uses weight-space to navigate the trade-off between editing task accuracy and general robustness.
arXiv Detail & Related papers (2023-02-28T19:41:37Z) - Aging with GRACE: Lifelong Model Editing with Discrete Key-Value
Adaptors [53.819805242367345]
We propose GRACE, a lifelong model editing method, which implements spot-fixes on streaming errors of a deployed model.
GRACE writes new mappings into a pre-trained model's latent space, creating a discrete, local codebook of edits without altering model weights.
Our experiments on T5, BERT, and GPT models show GRACE's state-of-the-art performance in making and retaining edits, while generalizing to unseen inputs.
arXiv Detail & Related papers (2022-11-20T17:18:22Z) - Memory-Based Model Editing at Scale [102.28475739907498]
Existing model editors struggle to accurately model an edit's intended scope.
We propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC)
SERAC stores edits in an explicit memory and learns to reason over them to modulate the base model's predictions as needed.
arXiv Detail & Related papers (2022-06-13T23:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.