Differentiable Nonlinear Model Predictive Control
- URL: http://arxiv.org/abs/2505.01353v1
- Date: Fri, 02 May 2025 15:43:37 GMT
- Title: Differentiable Nonlinear Model Predictive Control
- Authors: Jonathan Frey, Katrin Baumgärtner, Gianluca Frison, Dirk Reinhardt, Jasper Hoffmann, Leonard Fichtner, Sebastien Gros, Moritz Diehl,
- Abstract summary: This paper discusses the computation of solution sensitivities of general nonlinear programs (NLPs) using the implicit function theorem (IFT) and smoothed optimality conditions treated in interior-point methods (IPM)<n>We detail sensitivity computation within a sequential quadratic programming (SQP) method which employs an IPM for the quadratic subproblems.<n>The publication is accompanied by an efficient open-source implementation within the framework, providing both forward and adjoint sensitivities for general optimal control problems, achieving speedups exceeding 3x over the state-of-the-art solver mpc.pytorch.
- Score: 1.9272863690919875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficient computation of parametric solution sensitivities is a key challenge in the integration of learning-enhanced methods with nonlinear model predictive control (MPC), as their availability is crucial for many learning algorithms. While approaches presented in the machine learning community are limited to convex or unconstrained formulations, this paper discusses the computation of solution sensitivities of general nonlinear programs (NLPs) using the implicit function theorem (IFT) and smoothed optimality conditions treated in interior-point methods (IPM). We detail sensitivity computation within a sequential quadratic programming (SQP) method which employs an IPM for the quadratic subproblems. The publication is accompanied by an efficient open-source implementation within the framework, providing both forward and adjoint sensitivities for general optimal control problems, achieving speedups exceeding 3x over the state-of-the-art solver mpc.pytorch.
Related papers
- Learning based convex approximation for constrained parametric optimization [11.379408842026981]
We propose an input neural network (ICNN)-based self-supervised learning framework to solve constrained optimization problems.<n>We provide rigorous convergence analysis, showing that the framework converges to a Karush-Kuhn-Tucker (KKT) approximation point of the original problem.<n>Our approach achieves a superior balance among accuracy, feasibility, and computational efficiency.
arXiv Detail & Related papers (2025-05-07T00:33:14Z) - Quantum optimization for Nonlinear Model Predictive Control [0.0]
We propose a quantum computing approach for the solution of the NMPC optimization problem.
The approach has the potential to considerably decrease the computational time and/or enhance the solution quality.
arXiv Detail & Related papers (2024-10-25T10:56:42Z) - A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids [14.389086937116582]
This work proposes an approach that integrates reinforcement learning and model predictive control (MPC) to solve finite-horizon optimal control problems efficiently.<n>Our approach aims to mitigate this issue by decoupling the decision on the discrete variables from the decision on the continuous variables.<n>In the proposed approach, reinforcement learning determines the discrete decision variables and simplifies the online problem of the MPC controller from a mixed-integer linear program to a linear program.
arXiv Detail & Related papers (2024-09-17T15:17:16Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications.<n>This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS- DDR) to efficiently train parametric actor policies.<n>It is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods.
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Efficient model predictive control for nonlinear systems modelled by deep neural networks [6.5268245109828005]
This paper presents a model predictive control (MPC) for dynamic systems whose nonlinearity and uncertainty are modelled by deep neural networks (NNs)
Since the NN output contains a high-order complex nonlinearity of the system state and control input, the MPC problem is nonlinear and challenging to solve for real-time control.
arXiv Detail & Related papers (2024-05-16T18:05:18Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Toward Rapid, Optimal, and Feasible Power Dispatch through Generalized
Neural Mapping [0.0]
We propose LOOP-LC 2.0 as a learning-based approach for solving the power dispatch problem.
A notable advantage of the LOOP-LC 2.0 framework is its ability to ensure near-optimality and strict feasibility of solutions.
We demonstrate the effectiveness of the LOOP-LC 2.0 methodology in terms of training speed, computational time, optimality, and solution feasibility.
arXiv Detail & Related papers (2023-11-08T17:02:53Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.