Provable Efficiency of Guidance in Diffusion Models for General Data Distribution
- URL: http://arxiv.org/abs/2505.01382v1
- Date: Fri, 02 May 2025 16:46:43 GMT
- Title: Provable Efficiency of Guidance in Diffusion Models for General Data Distribution
- Authors: Gen Li, Yuchen Jiao,
- Abstract summary: Diffusion models have emerged as a powerful framework for generative modeling.<n>Guidance techniques play a crucial role in enhancing sample quality.<n>Existing studies only focus on case studies, where the distribution conditioned on each class is either isotropic Gaussian or supported on a one-dimensional interval with some extra conditions.
- Score: 7.237817437521988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as a powerful framework for generative modeling, with guidance techniques playing a crucial role in enhancing sample quality. Despite their empirical success, a comprehensive theoretical understanding of the guidance effect remains limited. Existing studies only focus on case studies, where the distribution conditioned on each class is either isotropic Gaussian or supported on a one-dimensional interval with some extra conditions. How to analyze the guidance effect beyond these case studies remains an open question. Towards closing this gap, we make an attempt to analyze diffusion guidance under general data distributions. Rather than demonstrating uniform sample quality improvement, which does not hold in some distributions, we prove that guidance can improve the whole sample quality, in the sense that the average reciprocal of the classifier probability decreases with the existence of guidance. This aligns with the motivation of introducing guidance.
Related papers
- Theory-Informed Improvements to Classifier-Free Guidance for Discrete Diffusion Models [24.186262549509102]
This paper theoretically analyzes CFG in the context of masked discrete diffusion.<n>High guidance early in sampling (when inputs are heavily masked) harms generation quality, while late-stage guidance has a larger effect.<n>Our method smoothens the transport between the data distribution and the initial (masked/uniform) distribution, which results in improved sample quality.
arXiv Detail & Related papers (2025-07-11T18:48:29Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Improving Discriminator Guidance in Diffusion Models [43.91753296748528]
We show that training the discriminator using Cross-Entropy loss, as commonly done, can increase the Kullback-Leibler divergence between the model and target distributions.<n>We propose a theoretically sound training objective for discriminator guidance that properly minimizes the KL divergence.
arXiv Detail & Related papers (2025-03-20T13:04:43Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Generalizing to any diverse distribution: uniformity, gentle finetuning and rebalancing [55.791818510796645]
We aim to develop models that generalize well to any diverse test distribution, even if the latter deviates significantly from the training data.
Various approaches like domain adaptation, domain generalization, and robust optimization attempt to address the out-of-distribution challenge.
We adopt a more conservative perspective by accounting for the worst-case error across all sufficiently diverse test distributions within a known domain.
arXiv Detail & Related papers (2024-10-08T12:26:48Z) - What does guidance do? A fine-grained analysis in a simple setting [19.51972040691315]
We give a fine-grained characterization of the dynamics of guidance in two cases.
We prove that for any nonzero level of score estimation error, sufficiently large guidance will result in sampling away from the support.
arXiv Detail & Related papers (2024-09-19T20:16:33Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Fair Sampling in Diffusion Models through Switching Mechanism [5.560136885815622]
We propose a fairness-aware sampling method called textitattribute switching mechanism for diffusion models.
We mathematically prove and experimentally demonstrate the effectiveness of the proposed method on two key aspects.
arXiv Detail & Related papers (2024-01-06T06:55:26Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.