What does guidance do? A fine-grained analysis in a simple setting
- URL: http://arxiv.org/abs/2409.13074v1
- Date: Thu, 19 Sep 2024 20:16:33 GMT
- Title: What does guidance do? A fine-grained analysis in a simple setting
- Authors: Muthu Chidambaram, Khashayar Gatmiry, Sitan Chen, Holden Lee, Jianfeng Lu,
- Abstract summary: We give a fine-grained characterization of the dynamics of guidance in two cases.
We prove that for any nonzero level of score estimation error, sufficiently large guidance will result in sampling away from the support.
- Score: 19.51972040691315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of guidance in diffusion models was originally motivated by the premise that the guidance-modified score is that of the data distribution tilted by a conditional likelihood raised to some power. In this work we clarify this misconception by rigorously proving that guidance fails to sample from the intended tilted distribution. Our main result is to give a fine-grained characterization of the dynamics of guidance in two cases, (1) mixtures of compactly supported distributions and (2) mixtures of Gaussians, which reflect salient properties of guidance that manifest on real-world data. In both cases, we prove that as the guidance parameter increases, the guided model samples more heavily from the boundary of the support of the conditional distribution. We also prove that for any nonzero level of score estimation error, sufficiently large guidance will result in sampling away from the support, theoretically justifying the empirical finding that large guidance results in distorted generations. In addition to verifying these results empirically in synthetic settings, we also show how our theoretical insights can offer useful prescriptions for practical deployment.
Related papers
- Provable Efficiency of Guidance in Diffusion Models for General Data Distribution [7.237817437521988]
Diffusion models have emerged as a powerful framework for generative modeling.<n>Guidance techniques play a crucial role in enhancing sample quality.<n>Existing studies only focus on case studies, where the distribution conditioned on each class is either isotropic Gaussian or supported on a one-dimensional interval with some extra conditions.
arXiv Detail & Related papers (2025-05-02T16:46:43Z) - Counterfactual Realizability [52.85109506684737]
We introduce a formal definition of realizability, the ability to draw samples from a distribution, and then develop a complete algorithm to determine whether an arbitrary counterfactual distribution is realizable.
We illustrate the implications of this new framework for counterfactual data collection using motivating examples from causal fairness and causal reinforcement learning.
arXiv Detail & Related papers (2025-03-14T20:54:27Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
We show that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution.
Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one.
We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one.
arXiv Detail & Related papers (2023-07-31T06:11:57Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Robust model training and generalisation with Studentising flows [22.757298187704745]
We discuss how these methods can be further improved based on insights from robust (in particular, resistant) statistics.
We propose to endow flow-based models with fat-tailed latent distributions as a simple drop-in replacement for the Gaussian distribution.
Experiments on several different datasets confirm the efficacy of the proposed approach.
arXiv Detail & Related papers (2020-06-11T16:47:01Z) - Understanding Negative Sampling in Graph Representation Learning [87.35038268508414]
We show that negative sampling is as important as positive sampling in determining the optimization objective and the resulted variance.
We propose Metropolis-Hastings (MCNS) to approximate the positive distribution with self-contrast approximation and accelerate negative sampling by Metropolis-Hastings.
We evaluate our method on 5 datasets that cover extensive downstream graph learning tasks, including link prediction, node classification and personalized recommendation.
arXiv Detail & Related papers (2020-05-20T06:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.