MDMP: Multi-modal Diffusion for supervised Motion Predictions with uncertainty
- URL: http://arxiv.org/abs/2410.03860v1
- Date: Fri, 4 Oct 2024 18:49:00 GMT
- Title: MDMP: Multi-modal Diffusion for supervised Motion Predictions with uncertainty
- Authors: Leo Bringer, Joey Wilson, Kira Barton, Maani Ghaffari,
- Abstract summary: This paper introduces a Multi-modal Diffusion model for Motion Prediction (MDMP)
It integrates skeletal data and textual descriptions of actions to generate refined long-term motion predictions with quantifiable uncertainty.
Our model consistently outperforms existing generative techniques in accurately predicting long-term motions.
- Score: 7.402769693163035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a Multi-modal Diffusion model for Motion Prediction (MDMP) that integrates and synchronizes skeletal data and textual descriptions of actions to generate refined long-term motion predictions with quantifiable uncertainty. Existing methods for motion forecasting or motion generation rely solely on either prior motions or text prompts, facing limitations with precision or control, particularly over extended durations. The multi-modal nature of our approach enhances the contextual understanding of human motion, while our graph-based transformer framework effectively capture both spatial and temporal motion dynamics. As a result, our model consistently outperforms existing generative techniques in accurately predicting long-term motions. Additionally, by leveraging diffusion models' ability to capture different modes of prediction, we estimate uncertainty, significantly improving spatial awareness in human-robot interactions by incorporating zones of presence with varying confidence levels for each body joint.
Related papers
- ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties [6.865435680843742]
We propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise.
Our method meets the rigorous real-time operational standards essential for autonomous vehicles.
It achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
arXiv Detail & Related papers (2024-05-01T18:16:55Z) - Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
We introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE)
MATE assesses the interactive motion of agents by employing neural interaction energy.
To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint.
arXiv Detail & Related papers (2024-04-25T12:47:47Z) - AdvMT: Adversarial Motion Transformer for Long-term Human Motion
Prediction [2.837740438355204]
We present the Adversarial Motion Transformer (AdvMT), a novel model that integrates a transformer-based motion encoder and a temporal continuity discriminator.
With adversarial training, our method effectively reduces the unwanted artifacts in predictions, thereby ensuring the learning of more realistic and fluid human motions.
arXiv Detail & Related papers (2024-01-10T09:15:50Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
We introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM) for text-to-motion generation.
M2DM incorporates a global self-attention mechanism and a regularization term to counteract code collapse.
We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token.
arXiv Detail & Related papers (2023-08-28T10:40:16Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
We propose TransFusion, an innovative and practical diffusion-based model for 3D human motion prediction.
Our model leverages Transformer as the backbone with long skip connections between shallow and deep layers.
In contrast to prior diffusion-based models that utilize extra modules like cross-attention and adaptive layer normalization, we treat all inputs, including conditions, as tokens to create a more lightweight model.
arXiv Detail & Related papers (2023-07-30T01:52:07Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Dyadic Human Motion Prediction [119.3376964777803]
We introduce a motion prediction framework that explicitly reasons about the interactions of two observed subjects.
Specifically, we achieve this by introducing a pairwise attention mechanism that models the mutual dependencies in the motion history of the two subjects.
This allows us to preserve the long-term motion dynamics in a more realistic way and more robustly predict unusual and fast-paced movements.
arXiv Detail & Related papers (2021-12-01T10:30:40Z) - Learning to Predict Diverse Human Motions from a Single Image via
Mixture Density Networks [9.06677862854201]
We propose a novel approach to predict future human motions from a single image, with mixture density networks (MDN) modeling.
Contrary to most existing deep human motion prediction approaches, the multimodal nature of MDN enables the generation of diverse future motion hypotheses.
Our trained model directly takes an image as input and generates multiple plausible motions that satisfy the given condition.
arXiv Detail & Related papers (2021-09-13T08:49:33Z) - Long Term Motion Prediction Using Keyposes [122.22758311506588]
We argue that, to achieve long term forecasting, predicting human pose at every time instant is unnecessary.
We call such poses "keyposes", and approximate complex motions by linearly interpolating between subsequent keyposes.
We show that learning the sequence of such keyposes allows us to predict very long term motion, up to 5 seconds in the future.
arXiv Detail & Related papers (2020-12-08T20:45:51Z) - SDMTL: Semi-Decoupled Multi-grained Trajectory Learning for 3D human
motion prediction [5.581663772616127]
We propose a novel end-to-end network, Semi-Decoupled Multi-grained Trajectory Learning network, to predict future human motion.
Specifically, we capture the temporal dynamics of motion trajectory at multi-granularity, including fine granularity and coarse.
We learn multi-grained trajectory information using BSMEs hierarchically and further capture the information of temporal evolutional directions at each granularity.
arXiv Detail & Related papers (2020-10-11T01:29:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.