Emotions in Artificial Intelligence
- URL: http://arxiv.org/abs/2505.01462v2
- Date: Mon, 12 May 2025 15:28:29 GMT
- Title: Emotions in Artificial Intelligence
- Authors: Hermann Borotschnig,
- Abstract summary: It is proposed that affect be interwoven with episodic memory by storing corresponding affective tags alongside all events.<n>This allows AIs to establish whether present situations resemble past events and project the associated emotional labels onto the current context.<n>The combined emotional state facilitates decision-making in the present by modulating action selection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This conceptual contribution offers a speculative account of how AI systems might emulate emotions as experienced by humans and animals. It presents a thought experiment grounded in the hypothesis that natural emotions evolved as heuristics for rapid situational appraisal and action selection, enabling biologically adaptive behaviour without requiring full deliberative modeling. The text examines whether artificial systems operating in complex action spaces could similarly benefit from these principles. It is proposed that affect be interwoven with episodic memory by storing corresponding affective tags alongside all events. This allows AIs to establish whether present situations resemble past events and project the associated emotional labels onto the current context. These emotional cues are then combined with need-driven emotional hints. The combined emotional state facilitates decision-making in the present by modulating action selection. The low complexity and experiential inertness of the proposed architecture are emphasized as evidence that emotional expression and consciousness are, in principle, orthogonal-permitting the theoretical possibility of affective zombies. On this basis, the moral status of AIs emulating affective states is critically examined. It is argued that neither the mere presence of internal representations of emotion nor consciousness alone suffices for moral standing; rather, the capacity for self-awareness of inner emotional states is posited as a necessary condition. A complexity-based criterion is proposed to exclude such awareness in the presented model. Additional thought experiments are presented to test the conceptual boundaries of this framework.
Related papers
- Mechanistic Interpretability of Emotion Inference in Large Language Models [16.42503362001602]
We show that emotion representations are functionally localized to specific regions in large language models.<n>We draw on cognitive appraisal theory to show that emotions emerge from evaluations of environmental stimuli.<n>This work highlights a novel way to causally intervene and precisely shape emotional text generation.
arXiv Detail & Related papers (2025-02-08T08:11:37Z) - Analyzing Advanced AI Systems Against Definitions of Life and Consciousness [0.0]
We propose a number of metrics for examining whether an advanced AI system has gained consciousness.<n>We suggest that sufficiently advanced architectures exhibiting immune like sabotage defenses, mirror self-recognition analogs, or meta-cognitive updates may cross key thresholds akin to life-like or consciousness-like traits.
arXiv Detail & Related papers (2025-02-07T15:27:34Z) - CTSM: Combining Trait and State Emotions for Empathetic Response Model [2.865464162057812]
Empathetic response generation endeavors to empower dialogue systems to perceive speakers' emotions and generate empathetic responses accordingly.
We propose Combining Trait and State emotions for Empathetic Response Model (CTSM)
To sufficiently perceive emotions in dialogue, we first construct and encode trait and state emotion embeddings.
We further enhance emotional perception capability through an emotion guidance module that guides emotion representation.
arXiv Detail & Related papers (2024-03-22T10:45:13Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
We show that EmotionPrompt can boost the performance of AI models while EmotionAttack can hinder it.
EmotionDecode reveals that AI models can comprehend emotional stimuli akin to the mechanism of dopamine in the human brain.
arXiv Detail & Related papers (2023-12-18T11:19:45Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
Empathetic dialogue models usually consider only the affective aspect or treat cognition and affection in isolation.
We propose the CASE model for empathetic dialogue generation.
arXiv Detail & Related papers (2022-08-18T14:28:38Z) - Emotions as abstract evaluation criteria in biological and artificial
intelligences [0.0]
We propose a framework which mimics emotions on a functional level.
Based on time allocation via emotional stationarity (TAES), emotions are implemented as abstract criteria.
The long-term goal of the agent, to align experience with character, is achieved by optimizing the frequency for selecting individual tasks.
arXiv Detail & Related papers (2021-11-30T10:49:04Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.