Grounding Task Assistance with Multimodal Cues from a Single Demonstration
- URL: http://arxiv.org/abs/2505.01578v1
- Date: Fri, 02 May 2025 20:43:11 GMT
- Title: Grounding Task Assistance with Multimodal Cues from a Single Demonstration
- Authors: Gabriel Sarch, Balasaravanan Thoravi Kumaravel, Sahithya Ravi, Vibhav Vineet, Andrew D. Wilson,
- Abstract summary: We introduce MICA (Multimodal Interactive Contextualized Assistance), a framework that improves conversational agents for task assistance by integrating eye gaze and speech cues.<n> Evaluations on questions derived from real-time chat-assisted task replication show that multimodal cues significantly improve response quality over frame-based retrieval.
- Score: 17.975173937253494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A person's demonstration often serves as a key reference for others learning the same task. However, RGB video, the dominant medium for representing these demonstrations, often fails to capture fine-grained contextual cues such as intent, safety-critical environmental factors, and subtle preferences embedded in human behavior. This sensory gap fundamentally limits the ability of Vision Language Models (VLMs) to reason about why actions occur and how they should adapt to individual users. To address this, we introduce MICA (Multimodal Interactive Contextualized Assistance), a framework that improves conversational agents for task assistance by integrating eye gaze and speech cues. MICA segments demonstrations into meaningful sub-tasks and extracts keyframes and captions that capture fine-grained intent and user-specific cues, enabling richer contextual grounding for visual question answering. Evaluations on questions derived from real-time chat-assisted task replication show that multimodal cues significantly improve response quality over frame-based retrieval. Notably, gaze cues alone achieves 93% of speech performance, and their combination yields the highest accuracy. Task type determines the effectiveness of implicit (gaze) vs. explicit (speech) cues, underscoring the need for adaptable multimodal models. These results highlight the limitations of frame-based context and demonstrate the value of multimodal signals for real-world AI task assistance.
Related papers
- True Multimodal In-Context Learning Needs Attention to the Visual Context [69.63677595066012]
Multimodal Large Language Models (MLLMs) have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks.<n>Current MLLMs tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation.<n>We introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context.
arXiv Detail & Related papers (2025-07-21T17:08:18Z) - Multimodal Prompt Alignment for Facial Expression Recognition [24.470095812039286]
MPA-FER provides fine-grained semantic guidance to the learning process of prompted visual features.<n>Our framework outperforms state-of-the-art methods on three FER benchmark datasets.
arXiv Detail & Related papers (2025-06-26T05:28:57Z) - ChatReID: Open-ended Interactive Person Retrieval via Hierarchical Progressive Tuning for Vision Language Models [49.09606704563898]
Person re-identification is a crucial task in computer vision, aiming to recognize individuals across non-overlapping camera views.<n>We propose a novel framework ChatReID, that shifts the focus towards a text-side-dominated retrieval paradigm, enabling flexible and interactive re-identification.<n>We introduce a hierarchical progressive tuning strategy, which endows Re-ID ability through three stages of tuning, i.e., from person attribute understanding to fine-grained image retrieval and to multi-modal task reasoning.
arXiv Detail & Related papers (2025-02-27T10:34:14Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.<n>This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)<n>SeTok groups visual features into semantic units via a dynamic clustering algorithm.<n>The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - ChatSpot: Bootstrapping Multimodal LLMs via Precise Referring
Instruction Tuning [24.87615615489849]
We present precise referring instructions that utilize diverse reference representations such as points and boxes as referring prompts to refer to the special region.
We propose ChatSpot, a unified end-to-end multimodal large language model that supports diverse forms of interactivity including mouse clicks, drag-and-drop, and drawing boxes.
arXiv Detail & Related papers (2023-07-18T17:56:06Z) - MIMIC-IT: Multi-Modal In-Context Instruction Tuning [44.879418596312554]
We present a dataset comprising 2.8 million multimodal instruction-response pairs, with 2.2 million unique instructions derived from images and videos.
Using the MIMIC-IT dataset, it has been observed that Otter demonstrates remarkable proficiency in multi-modal perception, reasoning, and in-context learning.
We release the MIMIC-IT dataset, instruction-response collection pipeline, benchmarks, and the Otter model.
arXiv Detail & Related papers (2023-06-08T17:59:56Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
We propose a visual-linguistic representation learning approach within a self-supervised learning framework.
We generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image.
We identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder.
arXiv Detail & Related papers (2023-04-03T05:07:49Z) - MAMO: Masked Multimodal Modeling for Fine-Grained Vision-Language
Representation Learning [23.45678557013005]
We propose a jointly masked multimodal modeling method to learn fine-grained multimodal representations.
Our method performs joint masking on image-text input and integrates both implicit and explicit targets for the masked signals to recover.
Our model achieves state-of-the-art performance on various downstream vision-language tasks, including image-text retrieval, visual question answering, visual reasoning, and weakly-supervised visual grounding.
arXiv Detail & Related papers (2022-10-09T06:31:15Z) - Prompt Tuning with Soft Context Sharing for Vision-Language Models [42.61889428498378]
We propose a novel method to tune pre-trained vision-language models on multiple target few-shot tasks jointly.
We show that SoftCPT significantly outperforms single-task prompt tuning methods.
arXiv Detail & Related papers (2022-08-29T10:19:10Z) - Look Before you Speak: Visually Contextualized Utterances [88.58909442073858]
We create a task for predicting utterances in a video using both visual frames and transcribed speech as context.
By exploiting the large number of instructional videos online, we train a model to solve this task at scale, without the need for manual annotations.
Our model achieves state-of-the-art performance on a number of downstream VideoQA benchmarks.
arXiv Detail & Related papers (2020-12-10T14:47:02Z) - Video Understanding as Machine Translation [53.59298393079866]
We tackle a wide variety of downstream video understanding tasks by means of a single unified framework.
We report performance gains over the state-of-the-art on several downstream tasks including video classification (EPIC-Kitchens), question answering (TVQA), captioning (TVC, YouCook2, and MSR-VTT)
arXiv Detail & Related papers (2020-06-12T14:07:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.