Understanding and Exploiting Plasticity for Non-stationary Network Resource Adaptation
- URL: http://arxiv.org/abs/2505.01584v2
- Date: Tue, 06 May 2025 02:36:10 GMT
- Title: Understanding and Exploiting Plasticity for Non-stationary Network Resource Adaptation
- Authors: Zhiqiang He, Zhi Liu,
- Abstract summary: We show that neural networks suffer from plasticity loss, significantly impeding their ability to adapt to evolving network conditions.<n>We propose the Reset Silent Neuron (ReSiN), which preserves neural plasticity through strategic neuron resets guided by both forward and backward propagation states.<n>In our implementation of an adaptive video streaming system, ReSiN has shown significant improvements over existing solutions.
- Score: 7.036243456626816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting to non-stationary network conditions presents significant challenges for resource adaptation. However, current solutions primarily rely on stationary assumptions. While data-driven reinforcement learning approaches offer promising solutions for handling network dynamics, our systematic investigation reveals a critical limitation: neural networks suffer from plasticity loss, significantly impeding their ability to adapt to evolving network conditions. Through theoretical analysis of neural propagation mechanisms, we demonstrate that existing dormant neuron metrics inadequately characterize neural plasticity loss. To address this limitation, we have developed the Silent Neuron theory, which provides a more comprehensive framework for understanding plasticity degradation. Based on these theoretical insights, we propose the Reset Silent Neuron (ReSiN), which preserves neural plasticity through strategic neuron resets guided by both forward and backward propagation states. In our implementation of an adaptive video streaming system, ReSiN has shown significant improvements over existing solutions, achieving up to 168% higher bitrate and 108% better quality of experience (QoE) while maintaining comparable smoothness. Furthermore, ReSiN consistently outperforms in stationary environments, demonstrating its robust adaptability across different network conditions.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Correlative Information Maximization: A Biologically Plausible Approach
to Supervised Deep Neural Networks without Weight Symmetry [43.584567991256925]
We propose a new normative approach to describe the signal propagation in biological neural networks in both forward and backward directions.
This framework addresses many concerns about the biological-plausibility of conventional artificial neural networks and the backpropagation algorithm.
Our approach provides a natural resolution to the weight symmetry problem between forward and backward signal propagation paths.
arXiv Detail & Related papers (2023-06-07T22:14:33Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Understanding plasticity in neural networks [41.79540750236036]
Plasticity is the ability of a neural network to quickly change its predictions in response to new information.
Deep neural networks are known to lose plasticity over the course of training even in relatively simple learning problems.
arXiv Detail & Related papers (2023-03-02T18:47:51Z) - Global quantitative robustness of regression feed-forward neural
networks [0.0]
We adapt the notion of the regression breakdown point to regression neural networks.
We compare the performance, measured by the out-of-sample loss, by a proxy of the breakdown rate.
The results indeed motivate to use robust loss functions for neural network training.
arXiv Detail & Related papers (2022-11-18T09:57:53Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
We introduce a framework for learning the dynamics of synaptic plasticity and neuromodulated synaptic plasticity in Spiking Neural Networks (SNNs)
We show that SNNs augmented with differentiable plasticity are sufficient for solving a set of challenging temporal learning tasks.
These networks are also shown to be capable of producing locomotion on a high-dimensional robotic learning task.
arXiv Detail & Related papers (2021-06-04T19:29:07Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures.
Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks.
arXiv Detail & Related papers (2020-02-18T05:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.