論文の概要: Multimodal and Multiview Deep Fusion for Autonomous Marine Navigation
- arxiv url: http://arxiv.org/abs/2505.01615v1
- Date: Fri, 02 May 2025 22:32:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.19254
- Title: Multimodal and Multiview Deep Fusion for Autonomous Marine Navigation
- Title(参考訳): 自律航法のためのマルチモーダル・マルチビューディープフュージョン
- Authors: Dimitrios Dagdilelis, Panagiotis Grigoriadis, Roberto Galeazzi,
- Abstract要約: このモデルは多視点RGBと長波赤外画像と疎LiDAR点雲を深く融合させる。
トレーニングはまた、Xバンドレーダと電子チャートデータを統合して予測を通知する。
得られたビューは、ナビゲーションの正確さと堅牢性を改善する、詳細な信頼性のあるシーン表現を提供する。
- 参考スコア(独自算出の注目度): 0.9831489366502302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a cross attention transformer based method for multimodal sensor fusion to build a birds eye view of a vessels surroundings supporting safer autonomous marine navigation. The model deeply fuses multiview RGB and long wave infrared images with sparse LiDAR point clouds. Training also integrates X band radar and electronic chart data to inform predictions. The resulting view provides a detailed reliable scene representation improving navigational accuracy and robustness. Real world sea trials confirm the methods effectiveness even in adverse weather and complex maritime settings.
- Abstract(参考訳): 自律型海洋航行を支援する船舶の鳥眼ビューを構築するために,マルチモーダルセンサフュージョンのためのクロスアテンショントランスフォーマーを用いた手法を提案する。
このモデルは多視点RGBと長波赤外画像と疎LiDAR点雲を深く融合させる。
トレーニングはまた、Xバンドレーダと電子チャートデータを統合して予測を通知する。
得られたビューは、ナビゲーションの正確さと堅牢性を改善する、詳細な信頼性のあるシーン表現を提供する。
実世界の海洋実験は、悪天候や複雑な海洋環境においても、この方法の有効性を確認している。
関連論文リスト
- TacoDepth: Towards Efficient Radar-Camera Depth Estimation with One-stage Fusion [54.46664104437454]
一段核融合を用いた効率的かつ正確なレーダ・カメラ深度推定モデルであるTacoDepthを提案する。
具体的には、グラフベースのRadar構造抽出器とピラミッドベースのRadar融合モジュールを設計する。
従来の最先端のアプローチと比較して、TacoDepthは深さ精度と処理速度を12.8%、91.8%改善している。
論文 参考訳(メタデータ) (2025-04-16T05:25:04Z) - MID: A Comprehensive Shore-Based Dataset for Multi-Scale Dense Ship Occlusion and Interaction Scenarios [10.748210940033484]
海上航行行動データセット(MID)は、複雑な海上環境における船舶検出の課題に対処するために設計されている。
MIDには5,673の画像と135,884の微調整されたターゲットインスタンスが含まれており、教師付き学習と半教師付き学習の両方をサポートしている。
MIDの画像は、43の水域を横断する現実世界のナビゲーションの高精細なビデオクリップから得られたもので、天候や照明条件も様々である。
論文 参考訳(メタデータ) (2024-12-08T09:34:23Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and
Camera Fusion [6.639648061168067]
マルチビューレーダーカメラで融合した3Dオブジェクト検出は、より遠くの検知範囲と自律運転に有用な機能を提供する。
現在のレーダーとカメラの融合方式は、レーダー情報をカメラデータで融合するための種類の設計を提供する。
セマンティック・アライメント・レーダ機能を実現するための新しいマルチビューレーダカメラフュージョン法であるMVFusionを提案する。
論文 参考訳(メタデータ) (2023-02-21T08:25:50Z) - Safe Vessel Navigation Visually Aided by Autonomous Unmanned Aerial
Vehicles in Congested Harbors and Waterways [9.270928705464193]
この研究は、従来のRGBカメラと補助的な絶対位置決めシステム(GPSなど)で捉えた長距離視覚データから未知の物体までの距離を検知し推定する最初の試みである。
シミュレーション結果は,UAV支援艦艇の視覚支援航法における提案手法の精度と有効性を示すものである。
論文 参考訳(メタデータ) (2021-08-09T08:15:17Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。