Fast Likelihood-Free Parameter Estimation for Lévy Processes
- URL: http://arxiv.org/abs/2505.01639v1
- Date: Sat, 03 May 2025 00:37:58 GMT
- Title: Fast Likelihood-Free Parameter Estimation for Lévy Processes
- Authors: Nicolas Coloma, William Kleiber,
- Abstract summary: We propose a simulation-based, likelihood-free approach for L'evy parameter estimation.<n>We show that NBE outperforms traditional methods in both accuracy and runtime.<n>We also investigate nearly a decade of high-frequency Bitcoin returns, requiring less than one minute to estimate parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: L\'evy processes are widely used in financial modeling due to their ability to capture discontinuities and heavy tails, which are common in high-frequency asset return data. However, parameter estimation remains a challenge when associated likelihoods are unavailable or costly to compute. We propose a fast and accurate method for L\'evy parameter estimation using the neural Bayes estimation (NBE) framework -- a simulation-based, likelihood-free approach that leverages permutation-invariant neural networks to approximate Bayes estimators. Through extensive simulations across several L\'evy models, we show that NBE outperforms traditional methods in both accuracy and runtime, while also enabling rapid bootstrap-based uncertainty quantification. We illustrate our approach on a challenging high-frequency cryptocurrency return dataset, where the method captures evolving parameter dynamics and delivers reliable and interpretable inference at a fraction of the computational cost of traditional methods. NBE provides a scalable and practical solution for inference in complex financial models, enabling parameter estimation and uncertainty quantification over an entire year of data in just seconds. We additionally investigate nearly a decade of high-frequency Bitcoin returns, requiring less than one minute to estimate parameters under the proposed approach.
Related papers
- BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
Current deep learning algorithms usually solve for the optimal classifier by emphimplicitly estimating the posterior probabilities.<n>This simple methodology has been proven effective for meticulously balanced academic benchmark datasets.<n>However, it is not applicable to the long-tailed data distributions in the real world.<n>This paper presents a novel approach (BAPE) that provides a more precise theoretical estimation of the data distributions.
arXiv Detail & Related papers (2025-06-29T15:12:50Z) - Accelerated Test-Time Scaling with Model-Free Speculative Sampling [58.69141724095398]
We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach.<n>We show that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding.<n>As a model-free approach, STAND can be applied to any existing language model without additional training.
arXiv Detail & Related papers (2025-06-05T07:31:18Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
arXiv Detail & Related papers (2023-09-08T16:32:47Z) - Towards black-box parameter estimation [0.0]
We develop new black-box procedures to estimate parameters of statistical models based on weak parameter structure assumptions.
For well-structured likelihoods with frequent occurrences, this is achieved by pre-training a deep neural network on an extensive simulated database.
arXiv Detail & Related papers (2023-03-27T09:39:38Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
We show how to estimate parameters from max-stable processes, where inference is exceptionally challenging.
We use data from model simulations as input and train deep neural networks to learn statistical parameters.
arXiv Detail & Related papers (2021-07-29T21:59:48Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.