Fully Integrated Vacuum-based Quantum Random Number Generator
- URL: http://arxiv.org/abs/2505.01701v1
- Date: Sat, 03 May 2025 05:39:52 GMT
- Title: Fully Integrated Vacuum-based Quantum Random Number Generator
- Authors: Xin Hua, Yiming Bian, Ying Zhu, Jiayi Dou, Jie Yang, Shengxiang Zhang, Jie Yan, Min Liu, Daigao Chen, Song Yu, Bingjie Xu, Yichen Zhang, Xi Xiao,
- Abstract summary: Quantum random number generators play a crucial role in securing high-demand information contexts by producing true random numbers.<n>Here, we propose a system on chip that fully leverages the advantages of different photonic integrated platforms.<n>The optical interference paths and photodiodes are integrated on a standard silicon process, while the laser source on-chip is realized on a III-V platform.
- Score: 15.799775642938247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum random number generators play a crucial role in securing high-demand information contexts by producing true random numbers. Nevertheless, the large volume and high-cost limit their widespread use. Here, we propose a system on chip that fully leverages the advantages of different photonic integrated platforms, where the interference optical paths and photodiodes are integrated on a standard silicon process, while the laser source on-chip is realized on a III-V platform. Using micro-lens coupling package technology, which contributes to a topnotch coupling loss lower than 2dB, the components on different platforms are combined and packaged with the amplifier circuits in a 42mm* 24mm footprint in a butterfly form. This complete miniaturized and cost-effective entropy source enables outputting a vacuum noise signal with a 3dB bandwidth of over 500MHz. After sampling and post-processing, a random number generation rate of up to 6.57Gbps is achieved. The results show a feasible way of overcoming the laser integration problem with silicon-based integrated quantum photonics. Foreseeable, commercial applications on a large scale are significantly promoted.
Related papers
- Broadband Entangled-Photon Pair Generation with Integrated Photonics: Guidelines and A Materials Comparison [0.0]
Correlated photon-pair sources are key components for quantum computing, networking, and sensing applications.
Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate entanglement with sub-100 microwatt power at telecom wavelengths.
This study evaluates broadband entanglement generation through spontaneous four-wave mixing in various nonlinear integrated photonic materials.
arXiv Detail & Related papers (2024-07-05T18:08:28Z) - Single-Mode Squeezed Light Generation and Tomography with an Integrated
Optical Parametric Oscillator [31.874825130479174]
A key resource is squeezed light, where quantum noise is redistributed between optical quadratures.
We introduce a monolithic, chip-scale platform that exploits the $chi(2)$ nonlinearity of a thin-film lithium niobate resonator device.
Our work represents a substantial step toward compact and efficient quantum optical systems.
arXiv Detail & Related papers (2023-10-19T17:53:36Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Fully on-chip photonic turnkey quantum source for entangled qubit/qudit
state generation [0.0]
Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in chip formats.
Here we demonstrate a fully integrated quantum light source, which overcomes these challenges through the combined integration of a laser cavity.
The hybrid quantum source employs an electrically-pumped InP gain section and a Si$_3$N$_4$ low-loss microring filter system.
arXiv Detail & Related papers (2022-06-17T12:14:21Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Ultra-broadband quadrature squeezing with thin-film lithium niobate
nanophotonics [0.0]
In this letter, we demonstrate squeezed light generation with thin-film lithium niobate integrated photonics.
We measure 0.5-0.09dB quadrature squeezing(3 dB inferred on-chip)
This work represents a significant step towards the on-chip implementation of continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-07-05T19:59:02Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Near-degenerate quadrature-squeezed vacuum generation on a
silicon-nitride chip [54.87128096861778]
In this Letter, we demonstrate the generation of quadrature-phase squeezed states in the radio-frequency carrier sideband using a small-footprint silicon-nitride microresonator with a dual-pumped four-wave-mixing process.
It is critical to account for the nonlinear behavior of the pump fields to properly predict the squeezing that can be generated in this system.
arXiv Detail & Related papers (2020-02-04T01:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.