論文の概要: Unraveling Media Perspectives: A Comprehensive Methodology Combining Large Language Models, Topic Modeling, Sentiment Analysis, and Ontology Learning to Analyse Media Bias
- arxiv url: http://arxiv.org/abs/2505.01754v1
- Date: Sat, 03 May 2025 09:09:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.256381
- Title: Unraveling Media Perspectives: A Comprehensive Methodology Combining Large Language Models, Topic Modeling, Sentiment Analysis, and Ontology Learning to Analyse Media Bias
- Title(参考訳): メディア視点の展開:メディアバイアス分析のための大規模言語モデル、トピックモデリング、知覚分析、オントロジー学習を組み合わせた包括的方法論
- Authors: Orlando Jähde, Thorsten Weber, Rüdiger Buchkremer,
- Abstract要約: 本研究では、政治ニュースにおけるメディアバイアスのスケーラブルで最小限のバイアス分析のための新しい手法を提案する。
提案手法は,ニュースソース間のイベント選択,ラベル付け,単語選択,コミッショニングと省略バイアスについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biased news reporting poses a significant threat to informed decision-making and the functioning of democracies. This study introduces a novel methodology for scalable, minimally biased analysis of media bias in political news. The proposed approach examines event selection, labeling, word choice, and commission and omission biases across news sources by leveraging natural language processing techniques, including hierarchical topic modeling, sentiment analysis, and ontology learning with large language models. Through three case studies related to current political events, we demonstrate the methodology's effectiveness in identifying biases across news sources at various levels of granularity. This work represents a significant step towards scalable, minimally biased media bias analysis, laying the groundwork for tools to help news consumers navigate an increasingly complex media landscape.
- Abstract(参考訳): バイアスのあるニュース報道は、情報のある意思決定と民主主義の機能に重大な脅威をもたらす。
本研究では、政治ニュースにおけるメディアバイアスのスケーラブルで最小限のバイアス分析のための新しい手法を提案する。
提案手法は,階層的トピックモデリング,感情分析,オントロジー学習などの自然言語処理技術を活用し,ニュースソース間のイベント選択,ラベル付け,単語選択,コミッショニングおよび省略バイアスについて検討する。
現在の政治事件に関する3つのケーススタディを通じて、様々なレベルの粒度でニュースソースにまたがるバイアスを識別する手法の有効性を実証する。
この研究は、スケーラブルで最小限のバイアスのあるメディアバイアス分析への重要な一歩であり、ニュース消費者がますます複雑なメディアの状況をナビゲートするためのツールの基礎を築き上げている。
関連論文リスト
- Decoding News Bias: Multi Bias Detection in News Articles [1.433758865948252]
我々は、ニュース記事に存在する様々なバイアスを調査し、大きな言語モデル(LLM)を用いたデータセットを構築した。
提案手法は広スペクトルバイアス検出の重要性を強調し,ニュース記事の完全性向上のための新たな洞察を提供する。
論文 参考訳(メタデータ) (2025-01-05T09:09:53Z) - P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
既存のアプローチは、要約の50%以上で、ニュース記事の政治的意見やスタンスを変えている。
政治的視点分類器によって制御される拡散モデルに基づく要約手法であるP3SUMを提案する。
3つのニュース要約データセットの実験により、P3SUMは最先端の要約システムより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-16T10:14:28Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Learning Unbiased News Article Representations: A Knowledge-Infused
Approach [0.0]
本研究では,グローバル・ローカル・コンテクストを用いて,ニュース記事の非バイアス表現を学習する知識注入型ディープラーニングモデルを提案する。
提案手法は,アルゴリズムによる政治的偏見を緩和し,記事の政治的傾きを最大73%の精度で予測する基礎的手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-09-12T06:20:34Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - An Interdisciplinary Approach for the Automated Detection and
Visualization of Media Bias in News Articles [0.0]
メディアバイアスを識別するためのデータセットや手法を考案することを目指しています。
私のビジョンは、ニュース読者が偏見によるメディアカバレッジの違いを認識できるようにするシステムを開発することです。
論文 参考訳(メタデータ) (2021-12-26T10:46:32Z) - How to Effectively Identify and Communicate Person-Targeting Media Bias
in Daily News Consumption? [8.586057042714698]
本稿では,コンテンツ分析のマニュアル処理を初めて自動化した,ニュースレコメンデーションのためのインプログレスシステムを提案する。
我々の推薦者は、個々のニュース記事に実際に存在している重要なフレームを検出し、明らかにする。
本研究は,イベントの異なる設定のニュース記事の推薦が,バイアスに対する意識を著しく向上させることを示す。
論文 参考訳(メタデータ) (2021-10-18T10:13:23Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
本論文では, 偏見の自動検出だけでなく, 政治的偏見や不公平さが言語的にどのように表現されるかについても検討する。
我々は,adfontesmedia.comから派生したラベル付き6964ニュース記事の新しいコーパスを活用し,バイアス評価のためのニューラルモデルを開発した。
論文 参考訳(メタデータ) (2020-10-20T22:25:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。