論文の概要: Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity
- arxiv url: http://arxiv.org/abs/2010.10652v1
- Date: Tue, 20 Oct 2020 22:25:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:04:39.656699
- Title: Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity
- Title(参考訳): 粒度の異なるニュース記事における政治的バイアスと不公平の分析
- Authors: Wei-Fan Chen, Khalid Al-Khatib, Henning Wachsmuth and Benno Stein
- Abstract要約: 本論文では, 偏見の自動検出だけでなく, 政治的偏見や不公平さが言語的にどのように表現されるかについても検討する。
我々は,adfontesmedia.comから派生したラベル付き6964ニュース記事の新しいコーパスを活用し,バイアス評価のためのニューラルモデルを開発した。
- 参考スコア(独自算出の注目度): 35.19976910093135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Media organizations bear great reponsibility because of their considerable
influence on shaping beliefs and positions of our society. Any form of media
can contain overly biased content, e.g., by reporting on political events in a
selective or incomplete manner. A relevant question hence is whether and how
such form of imbalanced news coverage can be exposed. The research presented in
this paper addresses not only the automatic detection of bias but goes one step
further in that it explores how political bias and unfairness are manifested
linguistically. In this regard we utilize a new corpus of 6964 news articles
with labels derived from adfontesmedia.com and develop a neural model for bias
assessment. By analyzing this model on article excerpts, we find insightful
bias patterns at different levels of text granularity, from single words to the
whole article discourse.
- Abstract(参考訳): メディア組織は、社会の信念や地位の形成に大きな影響を与えるため、大きな責任を負う。
例えば、政治的出来事を選択的または不完全な方法で報告することで、あらゆる形態のメディアは過度に偏ったコンテンツを含むことができる。
それゆえ、適切な質問は、そのような不均衡なニュース報道が露出できるかどうかと方法である。
本論文では, 偏見の自動検出だけでなく, 政治的偏見や不公平さが言語的にどのように表現されるかについても検討する。
本稿では,adfontesmedia.com由来のラベル付き6964ニュース記事の新しいコーパスを用いて,バイアス評価のためのニューラルモデルを開発した。
このモデルを記事抜粋で分析することにより、単語から記事全体まで、テキストの粒度の異なるレベルの洞察に富んだバイアスパターンが見つかる。
関連論文リスト
- DocNet: Semantic Structure in Inductive Bias Detection Models [0.4779196219827508]
本稿では,文書におけるバイアス検出の見過ごされがちな側面として,ニュース記事の意味的構造について考察する。
本稿では,新しい,インダクティブで低リソースなドキュメント埋め込みとバイアス検出モデルであるDocNetを提案する。
また、文書レベルのグラフ埋め込みに代表される、対立するパルチザン側からのニュース記事のセマンティック構造が顕著に類似していることも示している。
論文 参考訳(メタデータ) (2024-06-16T14:51:12Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
われわれはまず、超党派ニュースタイトル検出のための新しいデータセットを開発するために、人間の誘導する機械学習フレームワークを採用する。
全体的に右派メディアは比例的に超党派的なタイトルを使う傾向にある。
我々は、外国問題、政治システム、ニュースタイトルにおける過党主義を示唆する社会問題を含む3つの主要なトピックを識別する。
論文 参考訳(メタデータ) (2023-01-16T05:56:58Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
本稿では,自然言語理解の最先端手法を組み合わせたバイアス識別システムを提案する。
第2に,非専門家のニュース消費者にニュース記事のバイアスを伝えるために,バイアスに敏感な可視化を考案する。
第3に、私たちの主な貢献は、日々のニュース消費を近似した設定においてバイアス認識を測定する大規模なユーザスタディです。
論文 参考訳(メタデータ) (2021-10-18T10:23:19Z) - Newsalyze: Enabling News Consumers to Understand Media Bias [7.652448987187803]
フェイクニュース」の時代には、ニュース記事のスラントと信頼性を知ることが極めて重要である。
我々はNewsalyzeを紹介します。Newsalyzeは、言葉の選択とラベル付け(WCL)という、微妙で強力なメディアバイアスに焦点をあてたバイアス対応ニュースリーダーです。
WCLバイアスは、ニュースで報告された「フリーダム・ファイター」対「テロリスト」の評価を変えることができる。
論文 参考訳(メタデータ) (2021-05-20T11:20:37Z) - Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias [7.092487352312782]
手動で3つのアノテートデータセットを作成し、さまざまな視覚化戦略をテストする。
その結果, 対照群と比較して, 治療群の偏見に気付く効果は認められなかった。
多段階モデルを用いて、ジャーナリストの偏見は、記事の政治的極性や公平性に大きく関係していることがわかった。
論文 参考訳(メタデータ) (2021-05-20T10:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。