Quantum Speedup for Hypergraph Sparsification
- URL: http://arxiv.org/abs/2505.01763v1
- Date: Sat, 03 May 2025 09:33:46 GMT
- Title: Quantum Speedup for Hypergraph Sparsification
- Authors: Chenghua Liu, Minbo Gao, Zhengfeng Ji, Mingsheng Ying,
- Abstract summary: We propose the first quantum algorithm for hypergraph sparsification, addressing an open problem proposed by Apers and de Wolf (FOCS'20)<n>For a weighted hypergraph with $n$ vertices, $m$ hyperedges, and rank $r$, our algorithm outputs a near-linear size $varepsilon$-spectral sparsifier in time $widetilde O(rsqrtmn/varepsilon)$.<n>This algorithm matches the quantum lower bound for constant $r$ and demonstrates quantum speedup when compared with the state-of-the-
- Score: 3.5293335880819483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph sparsification serves as a foundation for many algorithms, such as approximation algorithms for graph cuts and Laplacian system solvers. As its natural generalization, hypergraph sparsification has recently gained increasing attention, with broad applications in graph machine learning and other areas. In this work, we propose the first quantum algorithm for hypergraph sparsification, addressing an open problem proposed by Apers and de Wolf (FOCS'20). For a weighted hypergraph with $n$ vertices, $m$ hyperedges, and rank $r$, our algorithm outputs a near-linear size $\varepsilon$-spectral sparsifier in time $\widetilde O(r\sqrt{mn}/\varepsilon)$. This algorithm matches the quantum lower bound for constant $r$ and demonstrates quantum speedup when compared with the state-of-the-art $\widetilde O(mr)$-time classical algorithm. As applications, our algorithm implies quantum speedups for computing hypergraph cut sparsifiers, approximating hypergraph mincuts and hypergraph $s$-$t$ mincuts.
Related papers
- Quantum Speedup for Sampling Random Spanning Trees [2.356162747014486]
We present a quantum algorithm for sampling random spanning trees from a weighted graph in $widetildeO(sqrtmn)$ time.<n>Our algorithm has sublinear runtime for dense graphs and achieves a quantum speedup over the best-known classical algorithm.
arXiv Detail & Related papers (2025-04-22T05:45:04Z) - Quantum algorithms for hypergraph simplex finding [0.0]
We study the quantum query algorithms for simplex finding, a generalization of triangle finding to hypergraphs.
This problem satisfies a rank-reduction property: a quantum query algorithm for finding simplices in rank-$r$ hypergraphs can be turned into a faster algorithm for finding simplices in rank-$(r-1)$ hypergraphs.
arXiv Detail & Related papers (2024-08-30T20:12:45Z) - Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
Gradient descent is one of the most basic algorithms for solving continuous optimization problems.
We propose a quantum algorithm that returns an $varepsilon$-approximation of its gradient with query complexity $widetildeO (1/varepsilon)$.
We also propose two quantum algorithms for Hessian estimation, aiming to improve quantum analogs of Newton's method.
arXiv Detail & Related papers (2024-07-04T11:03:48Z) - Algoritmo de Contagem Qu\^antico Aplicado ao Grafo Bipartido Completo [0.0]
Grover's algorithm is capable of finding $k$ elements in an unordered database with $N$ elements using $O(sqrtN/k)$ steps.
This work tackles the problem of using the quantum counting algorithm for estimating the value $k$ of marked elements in other graphs.
arXiv Detail & Related papers (2023-12-05T21:15:09Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Quantum Speedup for Graph Sparsification, Cut Approximation and
Laplacian Solving [1.0660480034605238]
"spectral sparsification" reduces number of edges to near-linear in number of nodes.
We show a quantum speedup for spectral sparsification and many of its applications.
Our algorithm implies a quantum speedup for solving Laplacian systems.
arXiv Detail & Related papers (2019-11-17T17:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.