論文の概要: Conformal Prediction for Indoor Positioning with Correctness Coverage Guarantees
- arxiv url: http://arxiv.org/abs/2505.01810v1
- Date: Sat, 03 May 2025 12:45:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.279967
- Title: Conformal Prediction for Indoor Positioning with Correctness Coverage Guarantees
- Title(参考訳): 正当性保証による室内位置の等角的予測
- Authors: Zhiyi Zhou, Hexin Peng, Hongyu Long,
- Abstract要約: 本稿では,深層学習に基づく屋内位置推定に共形予測(CP)を適用した。
CPはモデルの不確実性を非整合スコアに変換し、正確性を保証するために予測セットを構築し、統計的保証を提供する。
このモデルは、トレーニングデータセットで約100%、テストデータセットで85%の精度を達成し、そのパフォーマンスと一般化能力を効果的に実証した。
- 参考スコア(独自算出の注目度): 0.4779196219827508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advancement of Internet of Things (IoT) technologies, high-precision indoor positioning has become essential for Location-Based Services (LBS) in complex indoor environments. Fingerprint-based localization is popular, but traditional algorithms and deep learning-based methods face challenges such as poor generalization, overfitting, and lack of interpretability. This paper applies conformal prediction (CP) to deep learning-based indoor positioning. CP transforms the uncertainty of the model into a non-conformity score, constructs prediction sets to ensure correctness coverage, and provides statistical guarantees. We also introduce conformal risk control for path navigation tasks to manage the false discovery rate (FDR) and the false negative rate (FNR).The model achieved an accuracy of approximately 100% on the training dataset and 85% on the testing dataset, effectively demonstrating its performance and generalization capability. Furthermore, we also develop a conformal p-value framework to control the proportion of position-error points. Experiments on the UJIIndoLoc dataset using lightweight models such as MobileNetV1, VGG19, MobileNetV2, ResNet50, and EfficientNet show that the conformal prediction technique can effectively approximate the target coverage, and different models have different performance in terms of prediction set size and uncertainty quantification.
- Abstract(参考訳): モノのインターネット(IoT)技術の進歩により、複雑な屋内環境における位置ベースサービス(LBS)において、高精度屋内位置決めが不可欠になっている。
指紋に基づくローカライゼーションは人気があるが、従来のアルゴリズムやディープラーニングベースの手法は、一般化の欠如、過度な適合、解釈可能性の欠如といった課題に直面している。
本稿では,深層学習に基づく屋内位置推定に共形予測(CP)を適用した。
CPはモデルの不確実性を非整合スコアに変換し、正確性を保証するために予測セットを構築し、統計的保証を提供する。
また、偽発見率(FDR)と偽陰率(FNR)を管理するために、経路ナビゲーションタスクに対する共形リスク制御を導入する。
このモデルは、トレーニングデータセットで約100%、テストデータセットで85%の精度を達成し、そのパフォーマンスと一般化能力を効果的に実証した。
さらに,位置誤り点の割合を制御できる共形p値フレームワークも開発している。
MobileNetV1, VGG19, MobileNetV2, ResNet50, EfficientNet などの軽量モデルを用いたUJIIndoLocデータセット実験により, 共形予測手法が対象範囲を効果的に近似できることを示した。
関連論文リスト
- Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - Enhancing Trustworthiness of Graph Neural Networks with Rank-Based Conformal Training [17.120502204791407]
等角予測は統計的に保証された不確実性推定を生成することができる。
本稿では,GNN(RCP-GNN)のトレーニングフレームワークにおけるランクベースのCPを提案し,信頼性の高い不確実性推定を行う。
論文 参考訳(メタデータ) (2025-01-06T05:19:24Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
自己整合性理論に基づく新しい不確実性尺度を導入する。
次に,CPアルゴリズムに正当性に整合した不確かさ条件を組み込むことにより,適合性不確かさの基準を策定する。
実証的な評価は、我々の不確実性測定が過去の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-06-29T17:33:07Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
この研究は、Pinalized Inverse Probability(PIP)の非整合性スコアと、その正規化バージョンRePIPを導入し、効率性と情報性の両方を共同で最適化する。
この研究は、PIPに基づく共形分類器が、他の非整合性対策と比較して正確に望ましい振る舞いを示し、情報性と効率のバランスを保っていることを示す。
論文 参考訳(メタデータ) (2024-06-13T07:37:16Z) - Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
本稿では,意味的かつ解釈可能な表現の作成を監督するために,EMG PRにおける深層メートル法メタラーニングへのシフトを提案する。
我々は、不正確な決定をよりよく拒否する頑健なクラス近接性に基づく信頼度推定器を導出する。
論文 参考訳(メタデータ) (2024-04-17T23:37:50Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。