Conformal Prediction for Indoor Positioning with Correctness Coverage Guarantees
- URL: http://arxiv.org/abs/2505.01810v1
- Date: Sat, 03 May 2025 12:45:08 GMT
- Title: Conformal Prediction for Indoor Positioning with Correctness Coverage Guarantees
- Authors: Zhiyi Zhou, Hexin Peng, Hongyu Long,
- Abstract summary: This paper applies conformal prediction (CP) to deep learning-based indoor positioning.<n>CP transforms the uncertainty of the model into a non-conformity score, constructs prediction sets to ensure correctness coverage, and provides statistical guarantees.<n>The model achieved an accuracy of approximately 100% on the training dataset and 85% on the testing dataset, effectively demonstrating its performance and generalization capability.
- Score: 0.4779196219827508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advancement of Internet of Things (IoT) technologies, high-precision indoor positioning has become essential for Location-Based Services (LBS) in complex indoor environments. Fingerprint-based localization is popular, but traditional algorithms and deep learning-based methods face challenges such as poor generalization, overfitting, and lack of interpretability. This paper applies conformal prediction (CP) to deep learning-based indoor positioning. CP transforms the uncertainty of the model into a non-conformity score, constructs prediction sets to ensure correctness coverage, and provides statistical guarantees. We also introduce conformal risk control for path navigation tasks to manage the false discovery rate (FDR) and the false negative rate (FNR).The model achieved an accuracy of approximately 100% on the training dataset and 85% on the testing dataset, effectively demonstrating its performance and generalization capability. Furthermore, we also develop a conformal p-value framework to control the proportion of position-error points. Experiments on the UJIIndoLoc dataset using lightweight models such as MobileNetV1, VGG19, MobileNetV2, ResNet50, and EfficientNet show that the conformal prediction technique can effectively approximate the target coverage, and different models have different performance in terms of prediction set size and uncertainty quantification.
Related papers
- CLUE: Neural Networks Calibration via Learning Uncertainty-Error alignment [7.702016079410588]
We introduce CLUE (Calibration via Learning Uncertainty-Error Alignment), a novel approach that aligns predicted uncertainty with observed error during training.<n>We show that CLUE achieves superior calibration quality and competitive predictive performance with respect to state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-28T19:23:47Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.<n>We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - Enhancing Trustworthiness of Graph Neural Networks with Rank-Based Conformal Training [17.120502204791407]
Conformal Prediction can produce statistically guaranteed uncertainty estimates.<n>We propose a Rank-based CP during training framework to GNNs (RCP-GNN) for reliable uncertainty estimates.
arXiv Detail & Related papers (2025-01-06T05:19:24Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
We introduce a novel uncertainty measure based on self-consistency theory.
We then develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the CP algorithm.
Empirical evaluations indicate that our uncertainty measure outperforms prior state-of-the-art methods.
arXiv Detail & Related papers (2024-06-29T17:33:07Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
The work introduces the Penalized Inverse Probability (PIP) nonconformity score, and its regularized version RePIP, that allow the joint optimization of both efficiency and informativeness.
The work shows how PIP-based conformal classifiers exhibit precisely the desired behavior in comparison with other nonconformity measures and strike a good balance between informativeness and efficiency.
arXiv Detail & Related papers (2024-06-13T07:37:16Z) - Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
We propose a shift to deep metric-based meta-learning in EMG PR to supervise the creation of meaningful and interpretable representations.
We derive a robust class proximity-based confidence estimator that leads to a better rejection of incorrect decisions.
arXiv Detail & Related papers (2024-04-17T23:37:50Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.