The Penalized Inverse Probability Measure for Conformal Classification
- URL: http://arxiv.org/abs/2406.08884v1
- Date: Thu, 13 Jun 2024 07:37:16 GMT
- Title: The Penalized Inverse Probability Measure for Conformal Classification
- Authors: Paul Melki, Lionel Bombrun, Boubacar Diallo, Jérôme Dias, Jean-Pierre da Costa,
- Abstract summary: The work introduces the Penalized Inverse Probability (PIP) nonconformity score, and its regularized version RePIP, that allow the joint optimization of both efficiency and informativeness.
The work shows how PIP-based conformal classifiers exhibit precisely the desired behavior in comparison with other nonconformity measures and strike a good balance between informativeness and efficiency.
- Score: 0.5172964916120902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of safe and trustworthy machine learning systems, and particularly complex black box neural networks, in real-world applications requires reliable and certified guarantees on their performance. The conformal prediction framework offers such formal guarantees by transforming any point into a set predictor with valid, finite-set, guarantees on the coverage of the true at a chosen level of confidence. Central to this methodology is the notion of the nonconformity score function that assigns to each example a measure of ''strangeness'' in comparison with the previously seen observations. While the coverage guarantees are maintained regardless of the nonconformity measure, the point predictor and the dataset, previous research has shown that the performance of a conformal model, as measured by its efficiency (the average size of the predicted sets) and its informativeness (the proportion of prediction sets that are singletons), is influenced by the choice of the nonconformity score function. The current work introduces the Penalized Inverse Probability (PIP) nonconformity score, and its regularized version RePIP, that allow the joint optimization of both efficiency and informativeness. Through toy examples and empirical results on the task of crop and weed image classification in agricultural robotics, the current work shows how PIP-based conformal classifiers exhibit precisely the desired behavior in comparison with other nonconformity measures and strike a good balance between informativeness and efficiency.
Related papers
- Optimizing Probabilistic Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
We propose a novel framework that enhances efficiency by first vectorizing the non-conformity scores with ranked samples and then optimizing the shape of the prediction set by varying the quantiles for samples at the same rank.
Our method delivers valid coverage while producing discontinuous and more efficient prediction sets, making it particularly suited for high-stakes applications.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
The consistency of the resulting uncertainty values hinges on the premise that the learning function conforms to the properties specified by the GP model.
We propose to wed the GP with the prevailing conformal prediction (CP), a distribution-free post-processing framework that produces it prediction sets with a provably valid coverage.
arXiv Detail & Related papers (2024-10-07T19:22:15Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors [0.0]
Conformal prediction requires exchangeable data to ensure valid prediction sets at a user-specified significance level.
Adaptive conformal inference (ACI) was introduced to address this limitation.
We show that ACI does not require the use of conformal predictors; instead, it can be implemented with the more general confidence predictors.
arXiv Detail & Related papers (2024-09-23T21:02:33Z) - Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
Conformal prediction is a powerful framework for constructing prediction sets with valid coverage guarantees.
We propose a novel approach that combines multiple score functions to improve the performance of conformal predictors.
arXiv Detail & Related papers (2024-07-14T14:58:03Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - PAC-Bayes Generalization Certificates for Learned Inductive Conformal
Prediction [27.434939269672288]
We use PAC-Bayes theory to obtain generalization bounds on the coverage and the efficiency of set-valued predictors.
We leverage these theoretical results to provide a practical algorithm for using calibration data to fine-tune the parameters of a model and score function.
We evaluate the approach on regression and classification tasks, and outperform baselines calibrated using a Hoeffding bound-based PAC guarantee on ICP.
arXiv Detail & Related papers (2023-12-07T19:40:44Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.