Unemployment Dynamics Forecasting with Machine Learning Regression Models
- URL: http://arxiv.org/abs/2505.01933v1
- Date: Sat, 03 May 2025 21:55:28 GMT
- Title: Unemployment Dynamics Forecasting with Machine Learning Regression Models
- Authors: Kyungsu Kim,
- Abstract summary: In this paper, I explored how a range of regression and machine learning techniques can be applied to monthly U.S. unemployment data to produce timely forecasts.<n>I compared seven models: Linear Regression, SGDRegressor, Random Forest, XGBoost, CatBoost, Support Vector Regression, and an LSTM network.<n>Our study shows how modern machine-learning techniques can enhance real-time unemployment forecasting, offering economists and policymakers richer insights into labor market trends.
- Score: 1.9761774213809031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, I explored how a range of regression and machine learning techniques can be applied to monthly U.S. unemployment data to produce timely forecasts. I compared seven models: Linear Regression, SGDRegressor, Random Forest, XGBoost, CatBoost, Support Vector Regression, and an LSTM network, training each on a historical span of data and then evaluating on a later hold-out period. Input features include macro indicators (GDP growth, CPI), labor market measures (job openings, initial claims), financial variables (interest rates, equity indices), and consumer sentiment. I tuned model hyperparameters via cross-validation and assessed performance with standard error metrics and the ability to predict the correct unemployment direction. Across the board, tree-based ensembles (and CatBoost in particular) deliver noticeably better forecasts than simple linear approaches, while the LSTM captures underlying temporal patterns more effectively than other nonlinear methods. SVR and SGDRegressor yield modest gains over standard regression but don't match the consistency of the ensemble and deep-learning models. Interpretability tools ,feature importance rankings and SHAP values, point to job openings and consumer sentiment as the most influential predictors across all methods. By directly comparing linear, ensemble, and deep-learning approaches on the same dataset, our study shows how modern machine-learning techniques can enhance real-time unemployment forecasting, offering economists and policymakers richer insights into labor market trends. In the comparative evaluation of the models, I employed a dataset comprising thirty distinct features over the period from January 2020 through December 2024.
Related papers
- Beyond Scaling: Measuring and Predicting the Upper Bound of Knowledge Retention in Language Model Pre-Training [51.41246396610475]
This paper aims to predict performance in closed-book question answering (QA) without the help of external tools.<n>We conduct large-scale retrieval and semantic analysis across the pre-training corpora of 21 publicly available and 3 custom-trained large language models.<n>Building on these foundations, we propose Size-dependent Mutual Information (SMI), an information-theoretic metric that linearly correlates pre-training data characteristics.
arXiv Detail & Related papers (2025-02-06T13:23:53Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange.
Deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data.
The findings highlight the potential of deep learning for improving financial forecasting and investment strategies.
arXiv Detail & Related papers (2024-09-29T11:20:20Z) - Automated Data Augmentation for Few-Shot Time Series Forecasting: A Reinforcement Learning Approach Guided by a Model Zoo [34.40047933452929]
We present a pilot study on using reinforcement learning (RL) for time series data augmentation.<n>Our method, ReAugment, tackles three critical questions: which parts of the training set should be augmented, how the augmentation should be performed, and what advantages RL brings to the process.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability.
For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting.
arXiv Detail & Related papers (2023-12-31T16:38:32Z) - Nowcasting Madagascar's real GDP using machine learning algorithms [0.0]
We investigate the predictive power of different machine learning algorithms to nowcast Madagascar's gross domestic product (GDP)
We trained popular regression models, including linear regularized regression (Ridge, Lasso, Elastic-net), dimensionality reduction model (principal component regression), k-nearest neighbors algorithm (k-NN regression)
We measured the nowcast accuracy of each model by calculating the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
arXiv Detail & Related papers (2023-12-24T20:40:54Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - On the Costs and Benefits of Adopting Lifelong Learning for Software
Analytics -- Empirical Study on Brown Build and Risk Prediction [17.502553991799832]
This paper evaluates the use of lifelong learning (LL) for industrial use cases at Ubisoft.
LL is used to continuously build and maintain ML-based software analytics tools using an incremental learner that progressively updates the old model using new data.
arXiv Detail & Related papers (2023-05-16T21:57:16Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.