Generative AI in clinical practice: novel qualitative evidence of risk and responsible use of Google's NotebookLM
- URL: http://arxiv.org/abs/2505.01955v1
- Date: Sun, 04 May 2025 01:25:33 GMT
- Title: Generative AI in clinical practice: novel qualitative evidence of risk and responsible use of Google's NotebookLM
- Authors: Max Reuter, Maura Philippone, Bond Benton, Laura Dilley,
- Abstract summary: NotebookLM is a tool that generates AI-voiced podcasts to educate patients about treatment and rehabilitation.<n>We argue that NotebookLM presently poses clinical and technological risks that should be tested and considered prior to its implementation in clinical practice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of generative artificial intelligence, especially large language models (LLMs), presents opportunities for innovation in research, clinical practice, and education. Recently, Dihan et al. lauded LLM tool NotebookLM's potential, including for generating AI-voiced podcasts to educate patients about treatment and rehabilitation, and for quickly synthesizing medical literature for professionals. We argue that NotebookLM presently poses clinical and technological risks that should be tested and considered prior to its implementation in clinical practice.
Related papers
- Differentiating hype from practical applications of large language models in medicine - a primer for healthcare professionals [0.0]
Machine learning and artificial intelligence techniques, including large language models (LLMs), have been promised to deliver on healthcare innovation.<n>LLMs have no understanding of objective truth that is based in reality.<n>They also represent real risks to the disclosure of protected information when used by clinicians and researchers.
arXiv Detail & Related papers (2025-07-25T16:40:17Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
Synthetic Data Generation based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered.<n>This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images.<n>The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Retrieval-Reasoning Large Language Model-based Synthetic Clinical Trial Generation [8.567656208979475]
We introduce a novel Retrieval-Reasoning framework that leverages large language models to generate synthetic clinical trials.<n>Experiments conducted on real clinical trials from the urlClinicalTrials.gov database demonstrate that our synthetic data can effectively augment real datasets.<n>Our findings suggest that LLMs for synthetic clinical trial generation hold promise for accelerating clinical research and upholding ethical standards for patient privacy.
arXiv Detail & Related papers (2024-10-16T11:46:32Z) - Clinical Insights: A Comprehensive Review of Language Models in Medicine [1.5020330976600738]
This paper explores the advancements and applications of language models in healthcare, focusing on their clinical use cases.<n>It examines the evolution from early encoder-based systems requiring extensive fine-tuning to state-of-the-art large language and multimodal models capable of integrating text and visual data through in-context learning.<n>The analysis emphasizes locally deployable models, which enhance data privacy and operational autonomy, and their applications in tasks such as text generation, classification, information extraction, and conversational systems.
arXiv Detail & Related papers (2024-08-21T15:59:33Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process.
We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions.
The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care.
arXiv Detail & Related papers (2024-05-28T16:43:41Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - An Introduction to Natural Language Processing Techniques and Framework
for Clinical Implementation in Radiation Oncology [1.2714439146420664]
We present state-of-the-art NLP applications that employ large language models (LLMs) in radiation oncology research.
LLMs are prone to many errors such as hallucinations, biases, and ethical violations, which necessitate rigorous evaluation and validation.
Our article aims to provide guidance and insights for researchers and clinicians who are interested in developing and using NLP models in clinical radiation oncology.
arXiv Detail & Related papers (2023-11-03T19:32:35Z) - Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models [46.32860360019374]
Large language models (LLMs) have shown promise in this domain, but their direct deployment can lead to privacy issues.<n>We propose an innovative, resource-efficient approach, ClinGen, which infuses knowledge into the process.<n>Our empirical study across 7 clinical NLP tasks and 16 datasets reveals that ClinGen consistently enhances performance across various tasks.
arXiv Detail & Related papers (2023-11-01T04:37:28Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
Large Language Models (LLMs) have emerged as general-purpose models with the ability to process complex information.
We show how LLMs can provide a novel interface between clinicians and digital technologies.
We develop a new prognostic tool using automated machine learning.
arXiv Detail & Related papers (2023-10-05T14:18:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.