論文の概要: A Survey on Privacy Risks and Protection in Large Language Models
- arxiv url: http://arxiv.org/abs/2505.01976v1
- Date: Sun, 04 May 2025 03:04:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.360295
- Title: A Survey on Privacy Risks and Protection in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるプライバシーリスクと保護に関する調査
- Authors: Kang Chen, Xiuze Zhou, Yuanguo Lin, Shibo Feng, Li Shen, Pengcheng Wu,
- Abstract要約: 大規模言語モデル(LLM)は多様なアプリケーションにますます統合され、プライバシーの懸念が高まっている。
この調査は、LCMに関連するプライバシーリスクの包括的概要を提供し、これらの課題を軽減するための現在のソリューションを調べます。
- 参考スコア(独自算出の注目度): 13.602836059584682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although Large Language Models (LLMs) have become increasingly integral to diverse applications, their capabilities raise significant privacy concerns. This survey offers a comprehensive overview of privacy risks associated with LLMs and examines current solutions to mitigate these challenges. First, we analyze privacy leakage and attacks in LLMs, focusing on how these models unintentionally expose sensitive information through techniques such as model inversion, training data extraction, and membership inference. We investigate the mechanisms of privacy leakage, including the unauthorized extraction of training data and the potential exploitation of these vulnerabilities by malicious actors. Next, we review existing privacy protection against such risks, such as inference detection, federated learning, backdoor mitigation, and confidential computing, and assess their effectiveness in preventing privacy leakage. Furthermore, we highlight key practical challenges and propose future research directions to develop secure and privacy-preserving LLMs, emphasizing privacy risk assessment, secure knowledge transfer between models, and interdisciplinary frameworks for privacy governance. Ultimately, this survey aims to establish a roadmap for addressing escalating privacy challenges in the LLMs domain.
- Abstract(参考訳): 大きな言語モデル(LLM)は多様なアプリケーションにとってますます不可欠なものになっているが、その能力はプライバシーの懸念を招いている。
この調査は、LCMに関連するプライバシーリスクの包括的概要を提供し、これらの課題を軽減するための現在のソリューションを調べます。
まず、LLMにおけるプライバシー漏洩と攻撃を分析し、モデルインバージョン、トレーニングデータ抽出、メンバシップ推論といった手法を通じて、これらのモデルが意図せずに機密情報を漏洩する方法に焦点を当てる。
本稿では、不正なトレーニングデータの抽出や、悪意あるアクターによる脆弱性の潜在的利用など、プライバシー漏洩のメカニズムについて検討する。
次に、推論検出、フェデレーション学習、バックドア緩和、機密コンピューティングなどのリスクに対する既存のプライバシ保護をレビューし、プライバシ漏洩防止の有効性を評価する。
さらに、我々は、重要な実践課題を強調し、安全でプライバシー保護のLLMを開発するための今後の研究指針を提案し、プライバシーリスク評価を強調し、モデル間のセキュアな知識伝達、プライバシーガバナンスのための学際的なフレームワークを提案する。
最終的にこの調査は、LLMsドメインのプライバシー問題に対処するためのロードマップを確立することを目的としている。
関連論文リスト
- Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions [11.338466798715906]
細調整された大規模言語モデル(LLM)は、様々な領域で最先端のパフォーマンスを達成することができる。
本稿では、微調整LDMに関連するプライバシー問題に関する包括的調査を行う。
メンバーシップ推論、データ抽出、バックドア攻撃など、さまざまなプライバシ攻撃に対する脆弱性を強調します。
論文 参考訳(メタデータ) (2024-12-21T06:41:29Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
大規模言語モデル(LLM)は、人工知能の大幅な進歩を表し、様々な領域にまたがる応用を見つける。
トレーニングのための大規模なインターネットソースデータセットへの依存は、注目すべきプライバシー問題を引き起こす。
特定のアプリケーション固有のシナリオでは、これらのモデルをプライベートデータで微調整する必要があります。
論文 参考訳(メタデータ) (2024-08-10T05:41:19Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
強力なAIモデルによって、幅広いタスクでパフォーマンスが飛躍的に向上した。
プライバシの懸念は、さまざまなプライバシのリスクとAIモデルの脆弱性をカバーした、豊富な文献につながっている。
我々はこれらの調査論文の体系的なレビューを行い、GPAISにおけるプライバシーリスクの簡潔かつ有用な概観を提供する。
論文 参考訳(メタデータ) (2024-07-02T07:49:48Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.9208007322096533]
本稿では、機械学習(ML)の進化する展望と、その様々な分野における大きな影響について考察する。
プライバシ保護機械学習(PPML)の新たな分野に焦点を当てている。
MLアプリケーションは、通信、金融技術、監視といった産業にとってますます不可欠なものになりつつあるため、プライバシー上の懸念が高まる。
論文 参考訳(メタデータ) (2024-02-25T17:31:06Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey [43.063650238194384]
大規模言語モデル(LLM)は,近年,大規模化と広範囲なトレーニングデータによるパフォーマンス向上を図っている。
機械学習モデルのトレーニングデータ記憶は、特にLLMに関して、モデルサイズに合わせてスケールする。
記憶されたテキストシーケンスは、LSMから直接リークされる可能性があり、データのプライバシに深刻な脅威をもたらす。
論文 参考訳(メタデータ) (2023-09-27T15:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。