A Survey on Privacy Risks and Protection in Large Language Models
- URL: http://arxiv.org/abs/2505.01976v1
- Date: Sun, 04 May 2025 03:04:07 GMT
- Title: A Survey on Privacy Risks and Protection in Large Language Models
- Authors: Kang Chen, Xiuze Zhou, Yuanguo Lin, Shibo Feng, Li Shen, Pengcheng Wu,
- Abstract summary: Large Language Models (LLMs) have become increasingly integral to diverse applications, raising privacy concerns.<n>This survey offers a comprehensive overview of privacy risks associated with LLMs and examines current solutions to mitigate these challenges.
- Score: 13.602836059584682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although Large Language Models (LLMs) have become increasingly integral to diverse applications, their capabilities raise significant privacy concerns. This survey offers a comprehensive overview of privacy risks associated with LLMs and examines current solutions to mitigate these challenges. First, we analyze privacy leakage and attacks in LLMs, focusing on how these models unintentionally expose sensitive information through techniques such as model inversion, training data extraction, and membership inference. We investigate the mechanisms of privacy leakage, including the unauthorized extraction of training data and the potential exploitation of these vulnerabilities by malicious actors. Next, we review existing privacy protection against such risks, such as inference detection, federated learning, backdoor mitigation, and confidential computing, and assess their effectiveness in preventing privacy leakage. Furthermore, we highlight key practical challenges and propose future research directions to develop secure and privacy-preserving LLMs, emphasizing privacy risk assessment, secure knowledge transfer between models, and interdisciplinary frameworks for privacy governance. Ultimately, this survey aims to establish a roadmap for addressing escalating privacy challenges in the LLMs domain.
Related papers
- SoK: The Privacy Paradox of Large Language Models: Advancements, Privacy Risks, and Mitigation [9.414685411687735]
Large language models (LLMs) are sophisticated artificial intelligence systems that enable machines to generate human-like text with remarkable precision.<n>This paper provides a comprehensive analysis of privacy in LLMs, categorizing the challenges into four main areas.<n>We evaluate the effectiveness and limitations of existing mitigation mechanisms targeting these proposed privacy challenges and identify areas for further research.
arXiv Detail & Related papers (2025-06-15T03:14:03Z) - Differential Privacy in Machine Learning: From Symbolic AI to LLMs [49.1574468325115]
Differential privacy provides a formal framework to mitigate privacy risks.<n>It ensures that the inclusion or exclusion of any single data point does not significantly alter the output of an algorithm.
arXiv Detail & Related papers (2025-06-13T11:30:35Z) - Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions [11.338466798715906]
Fine-tuning Large Language Models (LLMs) can achieve state-of-the-art performance across various domains.<n>This paper provides a comprehensive survey of privacy challenges associated with fine-tuning LLMs.<n>We highlight vulnerabilities to various privacy attacks, including membership inference, data extraction, and backdoor attacks.
arXiv Detail & Related papers (2024-12-21T06:41:29Z) - Privacy-Preserving Large Language Models: Mechanisms, Applications, and Future Directions [0.0]
This survey explores the landscape of privacy-preserving mechanisms tailored for large language models.<n>We examine their efficacy in addressing key privacy challenges, such as membership inference and model inversion attacks.<n>By synthesizing state-of-the-art approaches and future trends, this paper provides a foundation for developing robust, privacy-preserving large language models.
arXiv Detail & Related papers (2024-12-09T00:24:09Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains.<n>Their reliance on massive internet-sourced datasets for training brings notable privacy issues.<n>Certain application-specific scenarios may require fine-tuning these models on private data.
arXiv Detail & Related papers (2024-08-10T05:41:19Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
Powerful AI models have led to impressive leaps in performance across a wide range of tasks.
Privacy concerns have led to a wealth of literature covering various privacy risks and vulnerabilities of AI models.
We conduct a systematic review of these survey papers to provide a concise and usable overview of privacy risks in GPAIS.
arXiv Detail & Related papers (2024-07-02T07:49:48Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.9208007322096533]
This paper examines the evolving landscape of machine learning (ML) and its profound impact across various sectors.<n>It focuses on the emerging field of Privacy-preserving Machine Learning (PPML)<n>As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns.
arXiv Detail & Related papers (2024-02-25T17:31:06Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey [43.063650238194384]
Large Language Models (LLMs) have shown greatly enhanced performance in recent years, attributed to increased size and extensive training data.
Training data memorization in Machine Learning models scales with model size, particularly concerning for LLMs.
Memorized text sequences have the potential to be directly leaked from LLMs, posing a serious threat to data privacy.
arXiv Detail & Related papers (2023-09-27T15:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.