論文の概要: Regression is all you need for medical image translation
- arxiv url: http://arxiv.org/abs/2505.02048v3
- Date: Tue, 21 Oct 2025 13:30:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:05.524503
- Title: Regression is all you need for medical image translation
- Title(参考訳): 医療用画像翻訳に必要な回帰情報
- Authors: Sebastian Rassmann, David Kügler, Christian Ewert, Martin Reuter,
- Abstract要約: 医療画像翻訳のための2.5D拡散型フレームワークであるYODAを提案する。
従来の拡散サンプリングはノイズを再現するので,物理信号平均化と同様,複数のサンプルを描画し,平均化する。
また,最初のDM予測を保ち,反復補正を緩和して1ステップでノイズフリーな画像を生成する回帰サンプリング YODAを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved impressive results in natural image synthesis, their core strengths - creativity and realism - can be detrimental in medical applications, where accuracy and fidelity are paramount. These models instead risk introducing hallucinations and replication of unwanted acquisition noise. Here, we propose YODA (You Only Denoise once - or Average), a 2.5D diffusion-based framework for medical image translation (MIT). Consistent with DM theory, we find that conventional diffusion sampling stochastically replicates noise. To mitigate this, we draw and average multiple samples, akin to physical signal averaging. As this effectively approximates the DM's expected value, we term this Expectation-Approximation (ExpA) sampling. We additionally propose regression sampling YODA, which retains the initial DM prediction and omits iterative refinement to produce noise-free images in a single step. Across five diverse multi-modal datasets - including multi-contrast brain MRI and pelvic MRI-CT - we demonstrate that regression sampling is not only substantially more efficient but also matches or exceeds image quality of full diffusion sampling even with ExpA. Our results reveal that iterative refinement solely enhances perceptual realism without benefiting information translation, which we confirm in relevant downstream tasks. YODA outperforms eight state-of-the-art DMs and GANs and challenges the presumed superiority of DMs and GANs over computationally cheap regression models for high-quality MIT. Furthermore, we show that YODA-translated images are interchangeable with, or even superior to, physical acquisitions for several medical applications.
- Abstract(参考訳): Generative Adversarial Nets (GANs) と Diffusion Models (DMs) は自然画像合成において顕著な成果を上げているが、その中心となる強みである創造性とリアリズムは、正確性と忠実性が最重要である医療応用において有害である。
これらのモデルは、幻覚と不要な取得ノイズの複製を導入するリスクを負う。
本稿では,医療画像翻訳のための2.5D拡散型フレームワークであるYODA(You Only Denoise once - or Average)を提案する。
DM理論とは対照的に,従来の拡散サンプリングは雑音を確率的に再現する。
これを緩和するために、物理信号平均化に似た複数のサンプルを描画し、平均化する。
これはDMの期待値を効果的に近似するので、この期待近似(ExpA)サンプリングと呼ぶ。
また,最初のDM予測を保ち,反復補正を省略して1ステップでノイズフリーな画像を生成する回帰サンプリング YODAを提案する。
マルチコントラスト脳MRIや骨盤MRI-CTを含む5つの多様なマルチモーダルデータセットにわたって、回帰サンプリングはより効率的であるだけでなく、ExpAでもフル拡散サンプリングの画質と一致または超えることを示した。
本結果から,反復的改善は情報翻訳の恩恵を受けずに知覚的リアリズムを向上することが明らかとなった。
YODAは8つの最先端のDMとGANを上回り、高品質MITの計算コストの低い回帰モデルよりも、DMとGANの予測上の優位性に挑戦する。
さらに, ヨダ変換画像は, いくつかの医療応用において, 物理的取得と交換可能であるか, あるいはそれより優れているかを示す。
関連論文リスト
- Translation of Fetal Brain Ultrasound Images into Pseudo-MRI Images using Artificial Intelligence [0.0]
第3三期では、胎児の脳の複雑さは定量的データを抽出するために高い画像品質を必要とする。
対照的に、MRI(MRI)は優れた画像品質と組織分化を提供するが、利用できなく、高価であり、時間を要する。
論文 参考訳(メタデータ) (2025-04-03T08:59:33Z) - Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data [4.069144210024564]
本稿では,ノイズの多い画像データから現実的なSOMを学習するための拡張DDGANアーキテクチャであるADDGANを提案する。
雑音の多い画像データから現実的なSOMを学習する能力を示す。
論文 参考訳(メタデータ) (2025-01-31T12:40:43Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
我々は,脳MRIと胸部X線による3つの時系列的ベンチマークデータセットを用いて,対物画像生成法について検討した。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では,データ合成における生成モデルの利用について検討する。
本稿では,テキストプロンプトとセグメンテーションマスクを条件とした医用画像合成のためのデータエンジンMRGenを提案する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
医用画像から画像への変換のためのクロスコンディショニング拡散モデル(CDM)を提案する。
まず、目的のモダリティの分布をモデル化するためのモダリティ固有表現モデル(MRM)を提案する。
そして、MDN(Modality-Decoupled Diffusion Network)を設計し、MRMから効率よく効果的に分布を学習する。
論文 参考訳(メタデータ) (2024-09-13T02:48:56Z) - DiNO-Diffusion. Scaling Medical Diffusion via Self-Supervised Pre-Training [0.0]
Dino-Diffusionは潜在拡散モデル(LDM)の自己教師型手法である
アノテーションへの依存をなくすことで、私たちのトレーニングは、公開胸部X線データセットから868万以上の未ラベル画像を活用する。
小さなデータプールからでも意味的に多様な合成データセットを生成するために使用できる。
論文 参考訳(メタデータ) (2024-07-16T10:51:21Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
医療応用のための堅牢で成功したディープラーニングモデルを開発するためには、大規模で大きな変動のある高品質なデータが不可欠である。
本稿では,DiffBoostと呼ばれる医用画像合成のための制御可能な拡散モデルを提案する。
近年の拡散確率モデルを利用して、現実的で多様な合成医用画像データを生成する。
論文 参考訳(メタデータ) (2023-10-19T16:18:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Adversarial Distortion Learning for Medical Image Denoising [43.53912137735094]
本稿では,2次元および3次元(2D/3D)のバイオメディカル画像データから,新たな逆歪み学習法を提案する。
提案されたADLは2つの自動エンコーダで構成されている。
デノイザとディスクリミネータはどちらも、Efficient-Unetと呼ばれる自動エンコーダをベースとしている。
論文 参考訳(メタデータ) (2022-04-29T13:47:39Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。