論文の概要: Subspace Aggregation Query and Index Generation for Multidimensional Resource Space Model
- arxiv url: http://arxiv.org/abs/2505.02129v2
- Date: Fri, 09 May 2025 10:17:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 12:48:53.973436
- Title: Subspace Aggregation Query and Index Generation for Multidimensional Resource Space Model
- Title(参考訳): 多次元資源空間モデルのための部分空間集約クエリとインデックス生成
- Authors: Xiaoping Sun, Hai Zhuge,
- Abstract要約: 多次元分類空間における資源の組織化は、大規模資源の効率的な管理とクエリのためのアプローチである。
本稿では,各次元の座標木の部分順序の範囲で定義される部分空間上の集約クエリを定義する。
グラフインデックスの生成手法として,次元座標上の部分順序関係を含む包含リンクを構築する手法を提案する。
- 参考スコア(独自算出の注目度): 2.1178416840822027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Organizing resources in a multidimensional classification space is an approach to efficiently managing and querying large-scale resources. This paper defines an aggregation query on subspace defined by a range on the partial order on coordinate tree at each dimension, where each point contains resources aggregated along the paths of partial order relations on the points so that aggregated resources at each point within the subspace can be measured, ranked and selected. To efficiently locate non-empty points in a large subspace, an approach to generating graph index is proposed to build inclusion links with partial order relations on coordinates of dimensions to enable a subspace query to reach non-empty points by following indexing links and aggregate resources along indexing paths back to their super points. Generating such an index is costly as the number of children of an index node can be very large so that the total number of indexing nodes is unbounded. The proposed approach adopts the following strategies to reduce the cost: (1) adding intersection links between two indexing nodes, which can better reduce query processing costs while controlling the number of nodes of the graph index; (2) intersection links are added between two nodes according to the probabilistic distribution calculated for estimating the costs of adding intersection between two nodes; (3) coordinates at one dimension having more resources are split by coordinates at another dimension to balance the number of resources hold by indexing nodes; and, (4) short-cut links are added between sibling coordinates of coordinate trees to make an efficient query on linear order coordinates. Analysis and experiments verified the effectiveness of the generated index in supporting subspace aggregation query. This work makes significant contributions to the development of data model based on multi-dimensional classification.
- Abstract(参考訳): 多次元分類空間における資源の組織化は、大規模資源の効率的な管理とクエリのためのアプローチである。
本稿では,各次元における座標木上の部分順序の範囲で定義される部分空間上の集約クエリを定義し,各点が各点上の部分順序関係の経路に沿って集約されたリソースを含むことにより,部分空間内の各点における集約されたリソースを計測,ランク付け,選択することができる。
大規模部分空間における空でない点を効率よく見つけるために,グラフインデックスを生成する手法を提案し,部分順序関係を次元の座標に組み込んだ包含リンクを構築し,サブスペースクエリをインデックス化リンクやアグリゲーションリソースをスーパーポイントに戻すことで空でない点に到達できるようにする。
このようなインデックスを生成するには、インデックスノードの子供数が非常に大きくなり、インデックスノードの総数が無制限になるため、コストがかかる。
提案手法では,(1)グラフインデックスのノード数を制御しながら,クエリ処理コストを削減できる2つのインデックスノード間の交点リンクの追加,(2)2つのノード間の交点の追加コストを推定する確率分布に基づく2つのノード間の交点リンクの追加,(3)インデックスノードが保持するリソースのバランスをとるための1次元の座標の分割,(4)座標木の兄弟座標間のショートカットリンクの追加による線形順序座標の効率的な問い合わせを行う。
解析と実験により、サブスペース集約クエリをサポートするために生成されたインデックスの有効性が検証された。
この研究は多次元分類に基づくデータモデルの開発に多大な貢献をしている。
関連論文リスト
- A Query-Driven Approach to Space-Efficient Range Searching [12.760453906939446]
クエリのほぼ直線的なサンプルは、クエリ中に訪れたノード数がほぼ最適であるパーティションツリーを構築することができることを示す。
我々は、ノード処理を分類問題として扱い、浅いニューラルネットワークのような高速な分類器を活用して、実験的に効率的なクエリ時間を得ることにより、このアプローチを強化する。
我々のアルゴリズムは,クエリのサンプルに基づいて,セパレータに関連付けられたノードを持つバランスのとれたツリーを構築し,クエリの待ち行列を最小化する。
論文 参考訳(メタデータ) (2025-02-19T12:01:00Z) - LIST: Learning to Index Spatio-Textual Data for Embedding based Spatial Keyword Queries [53.843367588870585]
リスト K-kNN 空間キーワードクエリ (TkQ) は、空間的およびテキスト的関連性の両方を考慮したランキング関数に基づくオブジェクトのリストを返す。
効率的かつ効率的な指標、すなわち高品質なラベルの欠如とバランスの取れない結果を構築する上で、大きな課題が2つある。
この2つの課題に対処する新しい擬似ラベル生成手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T05:32:33Z) - PA-GM: Position-Aware Learning of Embedding Networks for Deep Graph
Matching [14.713628231555223]
本稿では,線形代入問題を高次元空間にマッピングできる新しいエンドツーエンドニューラルネットワークを提案する。
我々のモデルは、ノードの相対的な位置に対するアンカーセットを構成する。
そして、相対位置の尺度に基づいて、ターゲットノードと各アンカーノードの特徴情報を集約する。
論文 参考訳(メタデータ) (2023-01-05T06:54:21Z) - Large-scale Entity Alignment via Knowledge Graph Merging, Partitioning
and Embedding [29.81122170002021]
本稿では,3つの視点から構造とアライメント損失を低減するため,スケーラブルなGNNベースのエンティティアライメント手法を提案する。
まず,中心性に基づく部分グラフ生成アルゴリズムを提案し,異なる部分グラフ間のブリッジとして機能するいくつかのランドマークエンティティをリコールする。
第二に、不完全近傍部分グラフから実体表現を復元する自己教師型実体再構成を導入する。
第三に、推論過程において、サブグラフの埋め込みをマージして、アライメント探索のための単一の空間を作る。
論文 参考訳(メタデータ) (2022-08-23T07:09:59Z) - DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous
Information Networks [64.62314068155997]
本稿では,異種情報ネットワーク(DeHIN)のための分散埋め込みフレームワークについて述べる。
DeHINは、大きなHINをハイパーグラフとして革新的に定式化するコンテキスト保存分割機構を提供する。
当社のフレームワークでは,木のようなパイプラインを採用することで,効率よくHINを分割する分散戦略を採用しています。
論文 参考訳(メタデータ) (2022-01-08T04:08:36Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
本稿では,クラスタの位置を保存した新しいものを作成するために,埋め込みを再利用する手法を提案する。
提案アルゴリズムは,新しい項目を埋め込むために$t$-SNEと同じ複雑さを持つ。
論文 参考訳(メタデータ) (2021-09-22T06:45:37Z) - SMLSOM: The shrinking maximum likelihood self-organizing map [0.0]
本稿では,確率分布モデルフレームワークに基づいて,適切な数のクラスタを自動的に選択するグリージーアルゴリズムを提案する。
既存の手法と比較して,提案手法は計算効率が高く,クラスタ数を正確に選択できる。
論文 参考訳(メタデータ) (2021-04-28T18:50:36Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Learning Spatial Context with Graph Neural Network for Multi-Person Pose
Grouping [71.59494156155309]
イメージベース多人数ポーズ推定のためのボトムアップ手法は,キーポイント検出とグループ化の2段階からなる。
本研究では,グラフ分割問題としてグループ化タスクを定式化し,グラフニューラルネットワーク(gnn)を用いて親和性行列を学習する。
学習された幾何学に基づく親和性は、強固なキーポイント結合を達成するために外観に基づく親和性とさらに融合する。
論文 参考訳(メタデータ) (2021-04-06T09:21:14Z) - The Case for Learned Spatial Indexes [62.88514422115702]
我々は、空間範囲の問合せに答えるために、最先端の学習した多次元インデックス構造(すなわちFlood)から提案した手法を用いる。
i) パーティション内の機械学習検索は、1次元でフィルタリングを使用する場合の2進探索よりも11.79%速く、39.51%高速であることを示す。
また、2次元でフィルタする最も近い競合相手の1.23倍から1.83倍の速さで機械学習インデックスを精査する。
論文 参考訳(メタデータ) (2020-08-24T12:09:55Z) - node2coords: Graph Representation Learning with Wasserstein Barycenters [59.07120857271367]
グラフの表現学習アルゴリズムである node2coords を導入する。
低次元空間を同時に学習し、その空間内のノードを座標する。
実験の結果,node2coordで学習した表現は解釈可能であることがわかった。
論文 参考訳(メタデータ) (2020-07-31T13:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。