Efficient Multivariate Time Series Forecasting via Calibrated Language Models with Privileged Knowledge Distillation
- URL: http://arxiv.org/abs/2505.02138v2
- Date: Tue, 06 May 2025 12:35:29 GMT
- Title: Efficient Multivariate Time Series Forecasting via Calibrated Language Models with Privileged Knowledge Distillation
- Authors: Chenxi Liu, Hao Miao, Qianxiong Xu, Shaowen Zhou, Cheng Long, Yan Zhao, Ziyue Li, Rui Zhao,
- Abstract summary: TimeKD aims to generate high-quality future representations from the proposed cross-modality teacher model.<n>To cultivate an effective student model, we propose an innovative privileged knowledge distillation (PKD) mechanism.
- Score: 25.23821206253495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series forecasting (MTSF) endeavors to predict future observations given historical data, playing a crucial role in time series data management systems. With advancements in large language models (LLMs), recent studies employ textual prompt tuning to infuse the knowledge of LLMs into MTSF. However, the deployment of LLMs often suffers from low efficiency during the inference phase. To address this problem, we introduce TimeKD, an efficient MTSF framework that leverages the calibrated language models and privileged knowledge distillation. TimeKD aims to generate high-quality future representations from the proposed cross-modality teacher model and cultivate an effective student model. The cross-modality teacher model adopts calibrated language models (CLMs) with ground truth prompts, motivated by the paradigm of Learning Under Privileged Information (LUPI). In addition, we design a subtractive cross attention (SCA) mechanism to refine these representations. To cultivate an effective student model, we propose an innovative privileged knowledge distillation (PKD) mechanism including correlation and feature distillation. PKD enables the student to replicate the teacher's behavior while minimizing their output discrepancy. Extensive experiments on real data offer insight into the effectiveness, efficiency, and scalability of the proposed TimeKD.
Related papers
- PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning [7.784244204592032]
Class-incremental learning (CIL) for time series data faces challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition.<n>We present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL)
arXiv Detail & Related papers (2025-03-10T10:27:21Z) - FANformer: Improving Large Language Models Through Effective Periodicity Modeling [30.84203256282429]
We introduce FANformer, which integrates Fourier Analysis Network (FAN) into attention mechanism to achieve efficient periodicity modeling.<n>Experiments show that FANformer consistently outperforms Transformer when scaling up model size and training tokens.<n>To further validate the effectiveness of FANformer, we pretrain a FANformer-1B on 1 trillion tokens.
arXiv Detail & Related papers (2025-02-28T18:52:24Z) - Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
This study proposes a knowledge distillation algorithm based on large language models and feature alignment.<n>The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
arXiv Detail & Related papers (2024-12-27T04:37:06Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.<n>Our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.<n>LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.<n>Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks.
These models can produce hallucinations, particularly in domains with incomplete knowledge.
We introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models.
arXiv Detail & Related papers (2024-08-22T12:04:04Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLM is a more effective and efficient KD framework for auto-regressive language models.
DisiLLM comprises two components: (1) a novel skew Kullback-Leibler divergence loss, where we unveil and leverage its theoretical properties, and (2) an adaptive off-policy approach designed to enhance the efficiency in utilizing student-generated outputs.
arXiv Detail & Related papers (2024-02-06T11:10:35Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - An Attention Free Long Short-Term Memory for Time Series Forecasting [0.0]
We focused on time series forecasting using attention free mechanism, a more efficient framework, and proposed a new architecture for time series prediction.
We proposed an architecture built using attention free LSTM layers that overcome linear models for conditional variance prediction.
arXiv Detail & Related papers (2022-09-20T08:23:49Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
We propose MixKD, a data-agnostic distillation framework, to endow the resulting model with stronger generalization ability.
We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the error and the empirical error.
Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
arXiv Detail & Related papers (2020-11-01T18:47:51Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.