論文の概要: Saliency-Guided Training for Fingerprint Presentation Attack Detection
- arxiv url: http://arxiv.org/abs/2505.02176v1
- Date: Sun, 04 May 2025 16:35:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.468492
- Title: Saliency-Guided Training for Fingerprint Presentation Attack Detection
- Title(参考訳): 指紋提示攻撃検出のためのサリエンシ誘導訓練
- Authors: Samuel Webster, Adam Czajka,
- Abstract要約: 従順誘導訓練は、モデル学習を画像の重要な領域に向ける。
本稿では,指紋提示攻撃検出(PAD)タスクへの最初の応用について述べる。
- 参考スコア(独自算出の注目度): 4.737519767218666
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Saliency-guided training, which directs model learning to important regions of images, has demonstrated generalization improvements across various biometric presentation attack detection (PAD) tasks. This paper presents its first application to fingerprint PAD. We conducted a 50-participant study to create a dataset of 800 human-annotated fingerprint perceptually-important maps, explored alongside algorithmically-generated "pseudosaliency," including minutiae-based, image quality-based, and autoencoder-based saliency maps. Evaluating on the 2021 Fingerprint Liveness Detection Competition testing set, we explore various configurations within five distinct training scenarios to assess the impact of saliency-guided training on accuracy and generalization. Our findings demonstrate the effectiveness of saliency-guided training for fingerprint PAD in both limited and large data contexts, and we present a configuration capable of earning the first place on the LivDet-2021 benchmark. Our results highlight saliency-guided training's promise for increased model generalization capabilities, its effectiveness when data is limited, and its potential to scale to larger datasets in fingerprint PAD. All collected saliency data and trained models are released with the paper to support reproducible research.
- Abstract(参考訳): 画像の重要な領域にモデル学習を誘導するSaliency-Guided Trainingは、様々な生体情報提示攻撃検出(PAD)タスクにまたがる一般化改善を実証している。
本論文は,指紋PADへの最初の応用について述べる。
筆者らは50名の参加者を対象に, 人差し指知覚重要度マップ800点のデータセットを作成し, マイナジーベース, 画像品質ベース, オートエンコーダベースのサリエンシマップを含む, アルゴリズムで生成した「疑似親和性」とともに探索した。
2021年フィンガープリントライブネス検出コンペティションセットの評価を行い、5つの異なるトレーニングシナリオの様々な構成を探索し、精度と一般化に対するサリエンシ誘導トレーニングの影響を評価した。
以上の結果から,LivDet-2021ベンチマークにおいて,指紋PADの正当性誘導トレーニングの有効性が示された。
以上の結果から,モデル一般化能力の向上に対するサリエンシ誘導トレーニングの約束,データ制限時の有効性,指紋PADの大規模データセットへのスケールアップの可能性を強調した。
収集されたサリエンシデータとトレーニングされたモデルはすべて、再現可能な研究を支援するために論文とともにリリースされている。
関連論文リスト
- Unsupervised Fingerphoto Presentation Attack Detection With Diffusion Models [8.979820109339286]
スマートフォンベースの非接触指紋認証は、従来のコンタクトベースの指紋生体認証システムに代わる信頼性の高い方法となっている。
その便利さにもかかわらず、指紋認証による指紋認証は、プレゼンテーション攻撃に対してより脆弱である。
我々は、最先端のディープラーニングに基づく拡散モデル、Denoising Probabilistic Diffusion Model (DDPM)に基づく新しい教師なしアプローチを提案する。
提案手法は,DDPMの入力対と出力対の再構成類似性を算出し,提示攻撃(PA)を検出する。
論文 参考訳(メタデータ) (2024-09-27T11:07:48Z) - Enhancement-Driven Pretraining for Robust Fingerprint Representation
Learning [0.0]
本稿では,強化に基づく事前学習を利用して,頑健な指紋表現を導出する独自の手法を提案する。
公開されている指紋データを用いて実験した結果,検証性能が著しく向上したことが明らかとなった。
論文 参考訳(メタデータ) (2024-02-16T17:36:56Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
我々は、時間的デュアルディープス・スコーリング(TDDS)と呼ばれる新しいデータセット・プルーニング手法を提案する。
本手法は,10%のトレーニングデータで54.51%の精度を達成し,ランダム選択を7.83%以上,他の比較手法を12.69%以上上回る結果を得た。
論文 参考訳(メタデータ) (2023-11-22T03:45:30Z) - FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data [7.203557048672379]
画像生成フレームワークであるFPGAN-Controlについて述べる。
指紋の識別と外観特性の絡み合いを助長する新規な外観損失を導入する。
FPGAN-Controlのメリットを,アイデンティティレベル,外観制御の程度,合成ドメイン間ギャップの低さの観点から定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2023-10-29T14:30:01Z) - DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection [1.9573380763700712]
ユーザの指紋を同意の有無にかかわらず偽造することにより、提示攻撃を行うことができる。
本稿では,プレゼンテーションアタックを検出するために,深層CNNと手作り特徴の動的アンサンブルを提案する。
提案手法をLiveness Detection Competitionからベンチマークデータベース上で検証した。
論文 参考訳(メタデータ) (2023-08-19T13:46:49Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - UniBoost: Unsupervised Unimodal Pre-training for Boosting Zero-shot
Vision-Language Tasks [60.46473247205654]
大規模で教師なしのユニモーダルモデルを事前学習として使用することにより、画像テキストペアモデルのゼロショット性能を向上させることができる。
実験の結果,単調な事前学習は最先端のCLIPモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-06-07T18:26:22Z) - Federated Test-Time Adaptive Face Presentation Attack Detection with
Dual-Phase Privacy Preservation [100.69458267888962]
顔提示攻撃検出(fPAD)は、現代の顔認識パイプラインにおいて重要な役割を果たす。
法的およびプライバシー上の問題により、トレーニングデータ(実際の顔画像と偽画像)は、異なるデータソース間で直接共有することはできない。
本稿では,二相プライバシー保護フレームワークを用いたフェデレーションテスト時間適応顔提示検出を提案する。
論文 参考訳(メタデータ) (2021-10-25T02:51:05Z) - EaZy Learning: An Adaptive Variant of Ensemble Learning for Fingerprint
Liveness Detection [14.99677459192122]
指紋の生存度検出機構は、データセット内環境では良好に機能するが、クロスセンサーおよびクロスデータセット設定下では不幸にも失敗する。
指紋スプーフ検出器の一般化能力、堅牢性、相互運用性を高めるために、学習モデルはデータに適応する必要がある。
本稿では,熱心学習と遅延学習の中間に適応できる汎用モデルであるEaZy学習を提案する。
論文 参考訳(メタデータ) (2021-03-03T06:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。