Fundamental Bounds of Wavefront Shaping of Spatially Entangled Photons
- URL: http://arxiv.org/abs/2505.02221v1
- Date: Sun, 04 May 2025 19:08:56 GMT
- Title: Fundamental Bounds of Wavefront Shaping of Spatially Entangled Photons
- Authors: Ronen Shekel, Sébastien M. Popoff, Yaron Bromberg,
- Abstract summary: We investigate the enhancement of two-photon correlations through thick scattering media.<n>For a system with $N$ modes, we show that shaping one photon yields the classical enhancement $eta approx (pi/4)N$, while shaping both photons before the medium reduces it to $eta approx (pi/4)2N$.<n>These results reveal unique quantum effects in complex media and identify strategies for quantum imaging and communication through scattering environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wavefront shaping enables control of classical light through scattering media. Extending these techniques to spatially entangled photons promises new quantum applications, but their fundamental limits, especially when both photons scatter, remain unclear. Here, we theoretically and numerically investigate the enhancement of two-photon correlations through thick scattering media. We analyze configurations where a spatial light modulator shapes one or both photons, either before or after the medium, and show that the optimal enhancement differs fundamentally from classical expectations. For a system with $N$ modes, we show that shaping one photon yields the classical enhancement $\eta \approx (\pi/4)N$, while shaping both photons before the medium reduces it to $\eta \approx (\pi/4)^2N$. However, in some symmetric detection schemes, when both photons are measured at the same mode, perfect correlations are restored with $\eta \approx N$, resembling digital optical phase conjugation. Conversely, shaping both photons after the medium leads to a complex, NP-hard-like optimization problem, yet achieves superior enhancements, up to $\eta \approx 4.6N$. These results reveal unique quantum effects in complex media and identify strategies for quantum imaging and communication through scattering environments.
Related papers
- Counter-propagating spontaneous parametric down-conversion source in lithium niobate on insulator [40.13294159814764]
We show the first integrated counter-propagating photon-pair source on lithium niobate on insulator, where signal and idler photons are generated in opposite directions.<n>The results establish a new route toward integrated, high-purity, and tunable photon sources.
arXiv Detail & Related papers (2025-06-26T15:44:16Z) - How to use the dispersion in the $χ^{(3)}$ tensor for broadband generation of polarization-entangled photons [0.0]
Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies.
We show broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal.
arXiv Detail & Related papers (2024-08-21T09:43:23Z) - Shaping entangled photons through thick scattering media using an advanced wave beacon [0.0]
Entangled photons propagate through a complex medium such as a biological tissue or a turbulent atmosphere.
Using wavefront shaping to compensate for the scattering and retrieve the two-photon correlations is challenging due to the low signal-to-noise ratio.
We propose and demonstrate a new feedback mechanism that is inspired by Klyshko's advanced wave picture.
arXiv Detail & Related papers (2024-03-27T07:56:13Z) - Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.<n>Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation [0.0]
We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
arXiv Detail & Related papers (2022-01-26T15:34:26Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.