Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation
- URL: http://arxiv.org/abs/2201.11007v1
- Date: Wed, 26 Jan 2022 15:34:26 GMT
- Title: Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation
- Authors: Y.-E. Wong, T. H. Chang, and H. H. Jen
- Abstract summary: We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The cascade-emitted biphotons generated from the alkali metal atomic
ensembles are an excellent entanglement resource which enables long-distance
quantum communication. The communication of quantum information between distant
locations can be realized by utilizing the low-loss telecom bandwidth in the
upper transition of the cascaded photons in a fiber-based quantum network.
Meanwhile, the infrared photon from the lower transition of this highly
directional and frequency-correlated biphoton can be created under the
four-wave mixing process and can be stored locally as a collective spin wave.
Here we theoretically investigate the frequency entanglement of this biphoton
and propose two approaches to remove their mutual correlations in frequency
spaces. The first approach applies an optical cavity which modulates the
biphoton spectrum into a more symmetric and narrow spectral function by
multiplexing multiple atomic ensembles with phase compensation. The purity of
single photon reaches up to $0.999$ and the entanglement entropy $S$ of the
biphoton reduces to $0.006$, which is $200$ times smaller than the one without
multiplexing. The other approach employs a symmetric pumping of the laser
fields in two atomic ensembles, which leads to a moderate reduction of $S\sim
0.3$ when non-discrimination detection devices are used for both photons. An
extremely low frequency entanglement implies an almost indistinguishable single
photon source, which offers a potential resource for photonic quantum
simulation and computation.
Related papers
- Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - A unipolar quantum dot diode structure for advanced quantum light
sources [0.0]
diode structure embedding semiconductor quantum dots.
Blinking-free single-photon emission and high two-photon indistinguishability is observed.
arXiv Detail & Related papers (2023-01-09T17:47:10Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model [3.307097167756987]
We study the multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model.
Our work paves the way towards the study of multiple-photon quantum coherent devices.
arXiv Detail & Related papers (2022-04-21T06:09:16Z) - Improved heralded single-photon source with a photon-number-resolving
superconducting nanowire detector [0.0]
We herald a single photon at telecommunication wavelength using a superconducting nanowire detector.
We develop an analytical model using a phase-space formalism that encompasses all multiphoton effects and relevant imperfections.
Our experiment, built using fiber-coupled and off-the-shelf components, delineates a path to engineering ideal sources of single photons.
arXiv Detail & Related papers (2021-12-21T18:48:34Z) - A chiral one-dimensional atom using a quantum dot in an open microcavity [0.45507178426690204]
In nanostructures, the light-matter interaction can be engineered to be chiral.
Chiral quantum optics has applications in creating nanoscopic single-photon routers, circulators, phase-shifters and two-photon gates.
arXiv Detail & Related papers (2021-10-06T10:59:33Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.