The GenAI Generation: Student Views of Awareness, Preparedness, and Concern
- URL: http://arxiv.org/abs/2505.02230v2
- Date: Tue, 08 Jul 2025 14:05:37 GMT
- Title: The GenAI Generation: Student Views of Awareness, Preparedness, and Concern
- Authors: Micaela Siraj, Jon Duke, Thomas Plötz,
- Abstract summary: Outpacing the development of uniform policies and structures, GenAI has heralded a unique era and given rise to the GenAI Generation.<n>This study examines students' perceptions of GenAI through a concise survey with optional open-ended questions.<n>Students with greater curricular exposure to GenAI tend to feel more prepared, while those without it more often express vulnerability and uncertainty.
- Score: 1.5709900716890133
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative Artificial Intelligence (GenAI) is revolutionizing education and workforce development, profoundly shaping how students learn, engage, and prepare for their future. Outpacing the development of uniform policies and structures, GenAI has heralded a unique era and given rise to the GenAI Generation. We define the GenAI Generation as a cohort of students whose education has been increasingly shaped by the opportunities and challenges GenAI presents during its widespread adoption within society. This study examines students' perceptions of GenAI through a concise survey with optional open-ended questions, focusing on their awareness, preparedness, and concerns. Notably, readiness appears increasingly tied to exposure to GenAI through one's coursework. Students with greater curricular exposure to GenAI tend to feel more prepared, while those without it more often express vulnerability and uncertainty, highlighting a new and growing divide in readiness that goes beyond traditional disciplinary boundaries. Evaluation of more than 250 responses, with over 40% providing detailed qualitative feedback, reveals a core dual sentiment: while most students express enthusiasm for GenAI, an even greater proportion voice a spectrum of concerns about ethics, job displacement, and the adequacy of educational structures given the highly transformative technology. These findings offer critical insights into how students view the potential and pitfalls of GenAI for future career impacts. The challenge ahead involves implementing associated recommendations for educational institutions, moving beyond the baseline of access toward more informed guidance on the use of these tools, while preserving critical thinking, ethical reasoning, and adaptive learning.
Related papers
- From Recall to Reasoning: Automated Question Generation for Deeper Math Learning through Large Language Models [44.99833362998488]
We investigated the first steps for optimizing content creation for advanced math.<n>We looked at the ability of GenAI to produce high-quality practice problems that are relevant to the course content.
arXiv Detail & Related papers (2025-05-17T08:30:10Z) - Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
Generative Artificial Intelligence is a powerful new technology with the potential to boost innovation and reshape governance in many industries.<n>However, organisations face major challenges in scaling GenAI, including technology complexity, governance gaps and resource misalignments.<n>This study explores how Enterprise Architecture Management can meet the complex requirements of GenAI adoption within large enterprises.
arXiv Detail & Related papers (2025-05-09T07:41:33Z) - Generative AI in Education: Student Skills and Lecturer Roles [0.0]
This study aims to identify and evaluate the key competencies students need to effectively engage with GenAI in education.<n>The literature review identified 14 essential student skills for GenAI engagement, with AI literacy, critical thinking, and ethical AI practices emerging as the most critical.<n>In our study of lecturer strategies, we identified six key areas, with GenAI Integration and Curriculum Design being the most emphasised.
arXiv Detail & Related papers (2025-04-28T10:58:30Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
This study reports findings from a survey of engineering educators on their use of and perspectives toward generative AI.<n>We asked them about their use of and comfort with GenAI, their overall perspectives on GenAI, the challenges and potential harms of using it for teaching, learning, and research, and examined whether their approach to using and integrating GenAI in their classroom influenced their experiences with GenAI and perceptions of it.
arXiv Detail & Related papers (2025-02-01T21:29:53Z) - SoK: Watermarking for AI-Generated Content [112.9218881276487]
Watermarking schemes embed hidden signals within AI-generated content to enable reliable detection.<n>Watermarks can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception.<n>This work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
arXiv Detail & Related papers (2024-11-27T16:22:33Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
There is limited prior research on computing students' use and perceptions of GenAI.
We surveyed all computer science majors in a small engineering-focused R1 university.
We discuss the impact of our findings on the emerging conversation around GenAI and education.
arXiv Detail & Related papers (2024-11-17T20:17:47Z) - Hey GPT, Can You be More Racist? Analysis from Crowdsourced Attempts to Elicit Biased Content from Generative AI [41.96102438774773]
This work presents the findings from a university-level competition, which challenged participants to design prompts for eliciting biased outputs from GenAI tools.
We quantitatively and qualitatively analyze the competition submissions and identify a diverse set of biases in GenAI and strategies employed by participants to induce bias in GenAI.
arXiv Detail & Related papers (2024-10-20T18:44:45Z) - The Roles of Generative Artificial Intelligence in Internet of Electric Vehicles [65.14115295214636]
We specifically consider Internet of electric vehicles (IoEV) and we categorize GenAI for IoEV into four different layers.
We introduce various GenAI techniques used in each layer of IoEV applications.
Public datasets available for training the GenAI models are summarized.
arXiv Detail & Related papers (2024-09-24T05:12:10Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
We introduce "AI-Lab," a framework for guiding students in effectively leveraging GenAI within core programming courses.
By identifying and rectifying GenAI's errors, students enrich their learning process.
For educators, AI-Lab provides mechanisms to explore students' perceptions of GenAI's role in their learning experience.
arXiv Detail & Related papers (2023-08-23T17:20:37Z) - The AI generation gap: Are Gen Z students more interested in adopting
generative AI such as ChatGPT in teaching and learning than their Gen X and
Millennial Generation teachers? [0.0]
Gen Z students were generally optimistic about the potential benefits of generative AI (GenAI)
Gen X and Gen Y teachers expressed heightened concerns about overreliance, ethical and pedagogical implications.
arXiv Detail & Related papers (2023-05-04T14:42:06Z) - Students' Voices on Generative AI: Perceptions, Benefits, and Challenges
in Higher Education [2.0711789781518752]
This study explores university students' perceptions of generative AI (GenAI) technologies, such as ChatGPT, in higher education.
Students recognized the potential for personalized learning support, writing and brainstorming assistance, and research and analysis capabilities.
Concerns about accuracy, privacy, ethical issues, and the impact on personal development, career prospects, and societal values were also expressed.
arXiv Detail & Related papers (2023-04-29T15:53:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.