Generative AI in Education: Student Skills and Lecturer Roles
- URL: http://arxiv.org/abs/2504.19673v1
- Date: Mon, 28 Apr 2025 10:58:30 GMT
- Title: Generative AI in Education: Student Skills and Lecturer Roles
- Authors: Stefanie Krause, Ashish Dalvi, Syed Khubaib Zaidi,
- Abstract summary: This study aims to identify and evaluate the key competencies students need to effectively engage with GenAI in education.<n>The literature review identified 14 essential student skills for GenAI engagement, with AI literacy, critical thinking, and ethical AI practices emerging as the most critical.<n>In our study of lecturer strategies, we identified six key areas, with GenAI Integration and Curriculum Design being the most emphasised.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative Artificial Intelligence (GenAI) tools such as ChatGPT are emerging as a revolutionary tool in education that brings both positive aspects and challenges for educators and students, reshaping how learning and teaching are approached. This study aims to identify and evaluate the key competencies students need to effectively engage with GenAI in education and to provide strategies for lecturers to integrate GenAI into teaching practices. The study applied a mixed method approach with a combination of a literature review and a quantitative survey involving 130 students from South Asia and Europe to obtain its findings. The literature review identified 14 essential student skills for GenAI engagement, with AI literacy, critical thinking, and ethical AI practices emerging as the most critical. The student survey revealed gaps in prompt engineering, bias awareness, and AI output management. In our study of lecturer strategies, we identified six key areas, with GenAI Integration and Curriculum Design being the most emphasised. Our findings highlight the importance of incorporating GenAI into education. While literature prioritized ethics and policy development, students favour hands-on, project-based learning and practical AI applications. To foster inclusive and responsible GenAI adoption, institutions should ensure equitable access to GenAI tools, establish clear academic integrity policies, and advocate for global GenAI research initiatives.
Related papers
- Synergizing Self-Regulation and Artificial-Intelligence Literacy Towards Future Human-AI Integrative Learning [92.34299949916134]
Self-regulated learning (SRL) and Artificial-Intelligence (AI) literacy are becoming key competencies for successful human-AI interactive learning.<n>This study analyzed data from 1,704 Chinese undergraduates using clustering methods to uncover four learner groups.
arXiv Detail & Related papers (2025-03-31T13:41:21Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
This study reports findings from a survey of engineering educators on their use of and perspectives toward generative AI.<n>We asked them about their use of and comfort with GenAI, their overall perspectives on GenAI, the challenges and potential harms of using it for teaching, learning, and research, and examined whether their approach to using and integrating GenAI in their classroom influenced their experiences with GenAI and perceptions of it.
arXiv Detail & Related papers (2025-02-01T21:29:53Z) - Navigating Ethical Challenges in Generative AI-Enhanced Research: The ETHICAL Framework for Responsible Generative AI Use [0.0]
The rapid adoption of generative artificial intelligence (GenAI) in research presents both opportunities and ethical challenges.
This paper develops the ETHICAL framework, which is a practical guide for responsible GenAI use in research.
arXiv Detail & Related papers (2024-12-11T05:49:11Z) - Generative AI in Modern Education Society [0.6798775532273751]
Transitioning from Education 1.0 to Education 5.0, the integration of generative artificial intelligence (GenAI) revolutionizes the learning environment.<n>Our understanding of academic integrity and the scholarship of teaching, learning, and research has been revolutionised by GenAI.
arXiv Detail & Related papers (2024-12-10T09:11:06Z) - Generative AI Literacy: Twelve Defining Competencies [48.90506360377104]
This paper introduces a competency-based model for generative artificial intelligence (AI) literacy covering essential skills and knowledge areas necessary to interact with generative AI.<n>The competencies range from foundational AI literacy to prompt engineering and programming skills, including ethical and legal considerations.<n>These twelve competencies offer a framework for individuals, policymakers, government officials, and educators looking to navigate and take advantage of the potential of generative AI responsibly.
arXiv Detail & Related papers (2024-11-29T14:55:15Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
There is limited prior research on computing students' use and perceptions of GenAI.
We surveyed all computer science majors in a small engineering-focused R1 university.
We discuss the impact of our findings on the emerging conversation around GenAI and education.
arXiv Detail & Related papers (2024-11-17T20:17:47Z) - Hey GPT, Can You be More Racist? Analysis from Crowdsourced Attempts to Elicit Biased Content from Generative AI [41.96102438774773]
This work presents the findings from a university-level competition, which challenged participants to design prompts for eliciting biased outputs from GenAI tools.
We quantitatively and qualitatively analyze the competition submissions and identify a diverse set of biases in GenAI and strategies employed by participants to induce bias in GenAI.
arXiv Detail & Related papers (2024-10-20T18:44:45Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Exploring User Perspectives on ChatGPT: Applications, Perceptions, and
Implications for AI-Integrated Education [40.38809129759498]
ChatGPT is most commonly used in the domains of higher education, K-12 education, and practical skills training.
On one hand, some users view it as a transformative tool capable of amplifying student self-efficacy and learning motivation.
On the other hand, there is a degree of apprehension among concerned users.
arXiv Detail & Related papers (2023-05-22T15:13:14Z) - The AI generation gap: Are Gen Z students more interested in adopting
generative AI such as ChatGPT in teaching and learning than their Gen X and
Millennial Generation teachers? [0.0]
Gen Z students were generally optimistic about the potential benefits of generative AI (GenAI)
Gen X and Gen Y teachers expressed heightened concerns about overreliance, ethical and pedagogical implications.
arXiv Detail & Related papers (2023-05-04T14:42:06Z) - Students' Voices on Generative AI: Perceptions, Benefits, and Challenges
in Higher Education [2.0711789781518752]
This study explores university students' perceptions of generative AI (GenAI) technologies, such as ChatGPT, in higher education.
Students recognized the potential for personalized learning support, writing and brainstorming assistance, and research and analysis capabilities.
Concerns about accuracy, privacy, ethical issues, and the impact on personal development, career prospects, and societal values were also expressed.
arXiv Detail & Related papers (2023-04-29T15:53:38Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
The Chinese University of Hong Kong (CUHK)-Jockey Club AI for the Future Project (AI4Future) co-created an AI curriculum for pre-tertiary education.
A team of 14 professors with expertise in engineering and education collaborated with 17 principals and teachers from 6 secondary schools to co-create the curriculum.
The co-creation process generated a variety of resources which enhanced the teachers knowledge in AI, as well as fostered teachers autonomy in bringing the subject matter into their classrooms.
arXiv Detail & Related papers (2021-01-19T11:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.