CONQURE: A Co-Execution Environment for Quantum and Classical Resources
- URL: http://arxiv.org/abs/2505.02241v2
- Date: Mon, 16 Jun 2025 16:18:15 GMT
- Title: CONQURE: A Co-Execution Environment for Quantum and Classical Resources
- Authors: Atulya Mahesh, Swastik Mittal, Frank Mueller,
- Abstract summary: This work proposes CONQURE, a co-execution environment for quantum and classical resources.<n>We show our API has a low overhead averaging 12.7m tests, and we demonstrate functionality on an ion-trap device.<n>Our OpenMP extension enables the parallelization of VQE runs with a 3.1X reduction in runtime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cutting edge classical computing today relies on a combination of CPU-based computing with a strong reliance on accelerators. In particular, high-performance computing (HPC) and machine learning (ML) rely heavily on acceleration via GPUs for numerical kernels. In the future, acceleration via quantum devices may complement GPUs for kernels where algorithms provide quantum advantage, i.e., significant speedups over classical algorithms. Computing with quantum kernels mapped onto quantum processing units (QPUs) requires seamless integration into HPC and ML. However, quantum offloading onto HPC/cloud lacks open-source software infrastructure. For classical algorithms, parallelization standards, such as OpenMP, MPI, or CUDA exist. In contrast, a lack of quantum abstractions currently limits the adoption of quantum acceleration in practical applications creating a gap between quantum algorithm development and practical HPC integration. Such integration needs to extend to efficient quantum offloading of kernels, which further requires scheduling of quantum resources, control of QPU kernel execution, tracking of QPU results, providing results to classical calling contexts and coordination with HPC scheduling. This work proposes CONQURE, a co-execution environment for quantum and classical resources. CONQURE is a fully open-source cloud queue framework that presents a novel modular scheduling framework allowing users to offload OpenMP quantum kernels to QPUs as quantum circuits, to relay results back to calling contexts in classical computing, and to schedule quantum resources via our CONQURE API. We show our API has a low overhead averaging 12.7ms in our tests, and we demonstrate functionality on an ion-trap device. Our OpenMP extension enables the parallelization of VQE runs with a 3.1X reduction in runtime.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A Hybrid Classical-Quantum HPC Workload [0.0]
A strategy for the orchestration of hybrid classical-quantum workloads on supercomputers featuring quantum devices is proposed.
An example application is investigated that offloads parts of computation to a quantum device.
The present test bed serves as a basis for more advanced hybrid workloads eventually involving a real quantum device.
arXiv Detail & Related papers (2023-12-08T09:54:51Z) - A pragma based C++ framework for hybrid quantum/classical computation [0.0]
This paper specifies the requirements of a hybrid quantum-classical framework compatible with HPC environments.
It introduces a novel hardware-agnostic framework called Q-Pragma.
arXiv Detail & Related papers (2023-09-05T22:29:02Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Cutting Quantum Circuits to Run on Quantum and Classical Platforms [25.18520278107402]
CutQC is a scalable hybrid computing approach that distributes a large quantum circuit onto quantum (QPU) and classical platforms ( CPU or GPU) for co-processing.
It achieves much higher quantum circuit evaluation fidelity than the large NISQ devices achieve in real-system runs.
arXiv Detail & Related papers (2022-05-12T02:09:38Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - A MLIR Dialect for Quantum Assembly Languages [78.8942067357231]
We demonstrate the utility of the Multi-Level Intermediate Representation (MLIR) for quantum computing.
We extend MLIR with a new quantum dialect that enables the expression and compilation of common quantum assembly languages.
We leverage a qcor-enabled implementation of the QIR quantum runtime API to enable a retargetable (quantum hardware agnostic) compiler workflow.
arXiv Detail & Related papers (2021-01-27T13:00:39Z) - Intel Quantum Simulator: A cloud-ready high-performance simulator of
quantum circuits [0.0]
We introduce the latest release of Intel Quantum Simulator (IQS), formerly known as qHiPSTER.
The high-performance computing capability of the software allows users to leverage the available hardware resources.
IQS allows to subdivide the computational resources to simulate a pool of related circuits in parallel.
arXiv Detail & Related papers (2020-01-28T19:00:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.