Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations
- URL: http://arxiv.org/abs/2403.05828v2
- Date: Mon, 18 Mar 2024 08:54:10 GMT
- Title: Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations
- Authors: Kuan-Cheng Chen, Xiaoren Li, Xiaotian Xu, Yun-Yuan Wang, Chen-Yu Liu,
- Abstract summary: This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
- Score: 1.9922905420195367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving high-performance computation on quantum systems presents a formidable challenge that necessitates bridging the capabilities between quantum hardware and classical computing resources. This study introduces an innovative distribution-aware Quantum-Classical-Quantum (QCQ) architecture, which integrates cutting-edge quantum software framework works with high-performance classical computing resources to address challenges in quantum simulation for materials and condensed matter physics. At the heart of this architecture is the seamless integration of VQE algorithms running on QPUs for efficient quantum state preparation, Tensor Network states, and QCNNs for classifying quantum states on classical hardware. For benchmarking quantum simulators, the QCQ architecture utilizes the cuQuantum SDK to leverage multi-GPU acceleration, integrated with PennyLane's Lightning plugin, demonstrating up to tenfold increases in computational speed for complex phase transition classification tasks compared to traditional CPU-based methods. This significant acceleration enables models such as the transverse field Ising and XXZ systems to accurately predict phase transitions with a 99.5% accuracy. The architecture's ability to distribute computation between QPUs and classical resources addresses critical bottlenecks in Quantum-HPC, paving the way for scalable quantum simulation. The QCQ framework embodies a synergistic combination of quantum algorithms, machine learning, and Quantum-HPC capabilities, enhancing its potential to provide transformative insights into the behavior of quantum systems across different scales. As quantum hardware continues to improve, this hybrid distribution-aware framework will play a crucial role in realizing the full potential of quantum computing by seamlessly integrating distributed quantum resources with the state-of-the-art classical computing infrastructure.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A Conceptual Architecture for a Quantum-HPC Middleware [1.82035221675293]
Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers.
With the increasing scale, systems that facilitate the efficient coupling of quantum-classical computing are becoming critical.
arXiv Detail & Related papers (2023-08-12T16:48:56Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Cutting Quantum Circuits to Run on Quantum and Classical Platforms [25.18520278107402]
CutQC is a scalable hybrid computing approach that distributes a large quantum circuit onto quantum (QPU) and classical platforms ( CPU or GPU) for co-processing.
It achieves much higher quantum circuit evaluation fidelity than the large NISQ devices achieve in real-system runs.
arXiv Detail & Related papers (2022-05-12T02:09:38Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations [18.78105450344374]
This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers.
CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices.
In real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers.
arXiv Detail & Related papers (2020-12-03T23:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.