論文の概要: Parameter-Efficient Transformer Embeddings
- arxiv url: http://arxiv.org/abs/2505.02266v1
- Date: Sun, 04 May 2025 21:47:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.518344
- Title: Parameter-Efficient Transformer Embeddings
- Title(参考訳): パラメータ効率の良い変圧器埋め込み
- Authors: Henry Ndubuaku, Mouad Talhi,
- Abstract要約: 本稿では,トークンの埋め込みベクトルをトークンIDから直接決定的に生成する手法を提案する。
自然言語推論タスクで標準トランスフォーマーとアーキテクチャをトレーニングします。
提案手法は, パラメータをはるかに少なくし, 高速かつ効果的に動作し, ドロップアウトを必要とせずに性能を向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings.
- Abstract(参考訳): トランスフォーマーベースのNLPモデルに層を埋め込むことはモデルパラメータの最大シェアを占め、語彙サイズでスケールするが、スケールに比例しない。
本稿では,トークン埋め込みベクトルをトークンIDから直接,その正規化値のフーリエ展開を用いて決定的に生成する手法を提案し,次いで高次相互作用を捉える軽量多層パーセプトロン(MLP)を提案する。
我々は,自然言語推論タスク(SNLI,MNLI)の標準変換器とアーキテクチャを訓練し,テキストの類似性(STS-B)に基づいてゼロショット性能を評価する。
提案手法は, パラメータが大幅に少なく, 訓練速度が向上し, ドロップアウトを必要とせず, 効果的に動作可能であることを示す。
この概念実証研究は、スケーラブルでメモリ効率のよい言語モデルの可能性を強調し、我々の研究結果に基づくより大規模な実験を動機付けている。
関連論文リスト
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTM) には、潜在空間における明示的な事前モデルに従う明示的な潜在思考ベクトルが含まれている。
LTMは従来のLLMを超える拡張次元を持ち、構造化された設計空間を提供する。
LTMは従来の自己回帰モデルや離散拡散モデルよりも、検証の難易度やゼロショット言語モデリングにおいて著しく優れている。
論文 参考訳(メタデータ) (2025-02-03T17:50:34Z) - Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis [16.253898272659242]
本研究では,トランスフォーマーを用いたLDM,特に低ランクパラメトリゼーションをフィードフォワードネットワーク(FFN)に適用することに焦点を当てた。
大規模なRefinedWebデータセットの実験では、低ランクのパラメトリゼーションが効率的(例:2.6$times$ FFNのスピードアップと32%のパラメータ)であり、トレーニング中に効果的であることが示されている。
この発見に感化されて、我々は現在の中規模および大規模トランスを超越した広帯域かつ構造化されたネットワークを、パープレキシティとスループット性能で開発する。
論文 参考訳(メタデータ) (2024-07-13T10:08:55Z) - Generative Parameter-Efficient Fine-Tuning [8.481707805559589]
GIFTは、トレーニング済みの重みから直接、レイヤーの微調整された重みを生成することを学習する。
この定式化ブリッジはパラメータ効率の良い微調整および表現微調整を示す。
論文 参考訳(メタデータ) (2023-12-01T16:33:57Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - When to Use Efficient Self Attention? Profiling Text, Speech and Image
Transformer Variants [39.00433193973159]
本研究は,テキスト,音声,視覚にまたがる自己注意型トランスフォーマーの効率性に関する,最初の統一的研究である。
効率の良いトランスフォーマー変種がバニラモデルよりも効率的になる入力長閾値(タイピング点)を同定する。
そこで本研究では,L-HuBERTを導入した。L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L-HuBERT,L -HuBERT,L-H
論文 参考訳(メタデータ) (2023-06-14T17:59:02Z) - Towards A Unified View of Sparse Feed-Forward Network in Pretraining
Large Language Model [58.9100867327305]
大規模かつスパースなフィードフォワード層(S-FFN)は、大きな言語モデルをテキスト処理するためにTransformersモデルのサイズをスケールアップするのに有効であることが証明されている。
我々は,S-FFNの2つの主要な設計選択,すなわち,メモリブロックのサイズとメモリブロックの選択方法について分析した。
言語モデルの事前学習において,より単純な選択方法である textbftextttAvg-K が得られた。
論文 参考訳(メタデータ) (2023-05-23T12:28:37Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Bayesian Transformer Language Models for Speech Recognition [59.235405107295655]
トランスフォーマーで表現される最先端のニューラルネットワークモデル(LM)は非常に複雑である。
本稿では,トランスフォーマーLM推定のためのベイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-09T10:55:27Z) - Rethinking embedding coupling in pre-trained language models [46.11201932668366]
我々は、事前学習された言語モデルにおける入力と出力の埋め込みの重みを共有する標準的な方法を再評価する。
分離された埋め込みによりモデリングの柔軟性が向上し、パラメータ割り当ての効率が大幅に向上することを示す。
我々は、微調整段階においてパラメータの数を増やすことなく、XTREMEベンチマークで高い性能を達成するモデルを訓練することができる。
論文 参考訳(メタデータ) (2020-10-24T07:43:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。