From Course to Skill: Evaluating LLM Performance in Curricular Analytics
- URL: http://arxiv.org/abs/2505.02324v2
- Date: Fri, 23 May 2025 13:39:57 GMT
- Title: From Course to Skill: Evaluating LLM Performance in Curricular Analytics
- Authors: Zhen Xu, Xinjin Li, Yingqi Huan, Veronica Minaya, Renzhe Yu,
- Abstract summary: Large language models (LLMs) are promising for handling large-scale, unstructured curriculum data.<n>We systematically evaluate four text alignment strategies based on LLMs or traditional NLP methods for skill extraction.<n>Our findings highlight the promise of LLMs in analyzing brief and abstract curriculum documents, but also reveal that their performance can vary significantly depending on model selection and prompting strategies.
- Score: 2.5104969073405976
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Curricular analytics (CA) -- systematic analysis of curricula data to inform program and course refinement -- becomes an increasingly valuable tool to help institutions align academic offerings with evolving societal and economic demands. Large language models (LLMs) are promising for handling large-scale, unstructured curriculum data, but it remains uncertain how reliably LLMs can perform CA tasks. In this paper, we systematically evaluate four text alignment strategies based on LLMs or traditional NLP methods for skill extraction, a core task in CA. Using a stratified sample of 400 curriculum documents of different types and a human-LLM collaborative evaluation framework, we find that retrieval-augmented generation (RAG) is the top-performing strategy across all types of curriculum documents, while zero-shot prompting performs worse than traditional NLP methods in most cases. Our findings highlight the promise of LLMs in analyzing brief and abstract curriculum documents, but also reveal that their performance can vary significantly depending on model selection and prompting strategies. This underscores the importance of carefully evaluating the performance of LLM-based strategies before large-scale deployment.
Related papers
- An Evaluation of Large Language Models on Text Summarization Tasks Using Prompt Engineering Techniques [0.0]
Large Language Models (LLMs) continue to advance natural language processing with their ability to generate human-like text.<n>We present a systematic evaluation of six LLMs across four datasets: CNN/Daily Mail and NewsRoom (news), SAMSum (dialog), and ArXiv (scientific)<n>Our study evaluates the performance using the ROUGE and BERTScore metrics.<n>For Long documents, introduce a sentence-based chunking strategy that enables LLMs with shorter context windows to summarize extended inputs in multiple stages.
arXiv Detail & Related papers (2025-07-07T15:34:05Z) - OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics [101.78963920333342]
We introduce OpenUnlearning, a standardized framework for benchmarking large language models (LLMs) unlearning methods and metrics.<n>OpenUnlearning integrates 9 unlearning algorithms and 16 diverse evaluations across 3 leading benchmarks.<n>We also benchmark diverse unlearning methods and provide a comparative analysis against an extensive evaluation suite.
arXiv Detail & Related papers (2025-06-14T20:16:37Z) - From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research [13.818244562506138]
Large Language Models (LLMs) provide a cost-effective and efficient alternative to human annotation.<n>This paper introduces the SILICON" (Systematic Inference with LLMs for Information Classification and Notation) workflow.<n>The workflow integrates established principles of human annotation with systematic prompt optimization and model selection.
arXiv Detail & Related papers (2024-12-19T02:21:41Z) - LLMCL-GEC: Advancing Grammatical Error Correction with LLM-Driven Curriculum Learning [44.010834543396165]
Large-scale language models (LLMs) have demonstrated remarkable capabilities in specific natural language processing (NLP) tasks.<n>However, they may still lack proficiency compared to specialized models in certain domains, such as grammatical error correction (GEC)
arXiv Detail & Related papers (2024-12-17T05:09:07Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
We benchmark large language models (LLMs) on instruction controllable text summarization.
Our study reveals that instruction controllable text summarization remains a challenging task for LLMs.
arXiv Detail & Related papers (2023-11-15T18:25:26Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
This paper describes the DSBA submissions to the Prompting Large Language Models as Explainable Metrics shared task.
Traditional similarity-based metrics such as BLEU and ROUGE have shown to misalign with human evaluation and are ill-suited for open-ended generation tasks.
arXiv Detail & Related papers (2023-11-07T06:36:39Z) - A Large Language Model Approach to Educational Survey Feedback Analysis [0.0]
This paper assesses the potential for the large language models (LLMs) GPT-4 and GPT-3.5 to aid in deriving insight from education feedback surveys.
arXiv Detail & Related papers (2023-09-29T17:57:23Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.