Quaternion Infrared Visible Image Fusion
- URL: http://arxiv.org/abs/2505.02364v1
- Date: Mon, 05 May 2025 05:02:05 GMT
- Title: Quaternion Infrared Visible Image Fusion
- Authors: Weihua Yang, Yicong Zhou,
- Abstract summary: Infrared-visible image fusion aims to integrate complementary information from infrared and visible images to generate a high-quality fused image.<n>Existing methods exhibit critical limitations such as neglecting color structure information in visible images and performance degradation when processing low-quality color-visible inputs.<n>We propose a quaternion infrared-visible image fusion framework to generate high-quality fused images completely in the quaternion domain.
- Score: 38.47237002133678
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Visible images provide rich details and color information only under well-lighted conditions while infrared images effectively highlight thermal targets under challenging conditions such as low visibility and adverse weather. Infrared-visible image fusion aims to integrate complementary information from infrared and visible images to generate a high-quality fused image. Existing methods exhibit critical limitations such as neglecting color structure information in visible images and performance degradation when processing low-quality color-visible inputs. To address these issues, we propose a quaternion infrared-visible image fusion (QIVIF) framework to generate high-quality fused images completely in the quaternion domain. QIVIF proposes a quaternion low-visibility feature learning model to adaptively extract salient thermal targets and fine-grained texture details from input infrared and visible images respectively under diverse degraded conditions. QIVIF then develops a quaternion adaptive unsharp masking method to adaptively improve high-frequency feature enhancement with balanced illumination. QIVIF further proposes a quaternion hierarchical Bayesian fusion model to integrate infrared saliency and enhanced visible details to obtain high-quality fused images. Extensive experiments across diverse datasets demonstrate that our QIVIF surpasses state-of-the-art methods under challenging low-visibility conditions.
Related papers
- Infrared and Visible Image Fusion Based on Implicit Neural Representations [3.8530055385287403]
Infrared and visible light image fusion aims to combine the strengths of both modalities to generate images that are rich in information.<n>This paper proposes an image fusion method based on Implicit Neural Representations (INR), referred to as INRFuse.<n> Experimental results indicate that INRFuse outperforms existing methods in both subjective visual quality and objective evaluation metrics.
arXiv Detail & Related papers (2025-06-20T06:34:19Z) - DFVO: Learning Darkness-free Visible and Infrared Image Disentanglement and Fusion All at Once [57.15043822199561]
A Darkness-Free network is proposed to handle Visible and infrared image disentanglement and fusion all at Once (DFVO)<n>DFVO employs a cascaded multi-task approach to replace the traditional two-stage cascaded training (enhancement and fusion)<n>Our proposed approach outperforms state-of-the-art alternatives in terms of qualitative and quantitative evaluations.
arXiv Detail & Related papers (2025-05-07T15:59:45Z) - DifIISR: A Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution [32.53713932204663]
DifIISR is an infrared image super-resolution diffusion model optimized for visual quality and perceptual performance.<n>We introduce an infrared thermal spectrum distribution regulation to preserve visual fidelity.<n>We incorporate various visual foundational models as the perceptual guidance for downstream visual tasks.
arXiv Detail & Related papers (2025-03-03T05:20:57Z) - Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - Implicit Multi-Spectral Transformer: An Lightweight and Effective Visible to Infrared Image Translation Model [0.6817102408452475]
In computer vision, visible light images often exhibit low contrast in low-light conditions, presenting a significant challenge.
Recent advancements in deep learning, particularly the deployment of Generative Adversarial Networks (GANs), have facilitated the transformation of visible light images to infrared images.
We propose a novel end-to-end Transformer-based model that efficiently converts visible light images into high-fidelity infrared images.
arXiv Detail & Related papers (2024-04-10T15:02:26Z) - Aleth-NeRF: Illumination Adaptive NeRF with Concealing Field Assumption [65.96818069005145]
We introduce the concept of a "Concealing Field," which assigns transmittance values to the surrounding air to account for illumination effects.
In dark scenarios, we assume that object emissions maintain a standard lighting level but are attenuated as they traverse the air during the rendering process.
We present a comprehensive multi-view dataset captured under challenging illumination conditions for evaluation.
arXiv Detail & Related papers (2023-12-14T16:24:09Z) - IAIFNet: An Illumination-Aware Infrared and Visible Image Fusion Network [13.11361803763253]
We propose an Illumination-Aware Infrared and Visible Image Fusion Network, named as IAIFNet.
In our framework, an illumination enhancement network first estimates the incident illumination maps of input images.
With the help of proposed adaptive differential fusion module (ADFM) and salient target aware module (STAM), an image fusion network effectively integrates the salient features of the illumination-enhanced infrared and visible images into a fusion image of high visual quality.
arXiv Detail & Related papers (2023-09-26T15:12:29Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
Previous arts mainly focus on the low-light images captured in the visible spectrum using pixel-wise loss.
We propose a novel approach to increase the visibility of images captured under low-light environments by removing the in-camera infrared (IR) cut-off filter.
arXiv Detail & Related papers (2023-07-09T08:29:19Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z) - Bayesian Fusion for Infrared and Visible Images [26.64101343489016]
In this paper, a novel Bayesian fusion model is established for infrared and visible images.
We aim at making the fused image satisfy human visual system.
Compared with the previous methods, the novel model can generate better fused images with high-light targets and rich texture details.
arXiv Detail & Related papers (2020-05-12T14:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.