Unveiling the Landscape of LLM Deployment in the Wild: An Empirical Study
- URL: http://arxiv.org/abs/2505.02502v1
- Date: Mon, 05 May 2025 09:30:19 GMT
- Title: Unveiling the Landscape of LLM Deployment in the Wild: An Empirical Study
- Authors: Xinyi Hou, Jiahao Han, Yanjie Zhao, Haoyu Wang,
- Abstract summary: Large language models (LLMs) are increasingly deployed via open-source and commercial frameworks, enabling individuals and organizations to self-host advanced AI capabilities.<n>Insecure defaults and misconfigurations often expose LLM services to the public Internet, posing significant security and system engineering risks.<n>This study aims to unveil the current landscape of public-facing LLM deployments in the wild through a large-scale empirical study.
- Score: 5.1875389249043415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Large language models (LLMs) are increasingly deployed via open-source and commercial frameworks, enabling individuals and organizations to self-host advanced AI capabilities. However, insecure defaults and misconfigurations often expose LLM services to the public Internet, posing significant security and system engineering risks. Aims: This study aims to unveil the current landscape of public-facing LLM deployments in the wild through a large-scale empirical study, focusing on service prevalence, exposure characteristics, systemic vulnerabilities, and associated risks. Method: We conducted an Internet-wide measurement to identify public-facing LLM deployments across 15 frameworks, discovering 320,102 services. We extracted 158 unique API endpoints, grouped into 12 functional categories based on capabilities and security risks. We further analyzed configurations, authentication practices, and geographic distributions, revealing deployment trends and systemic issues in real-world LLM system engineering. Results: Our study shows that public LLM deployments are rapidly growing but often insecure. Among all endpoints, we observe widespread use of insecure protocols, poor TLS configurations, and unauthenticated access to critical operations. Security risks, including model disclosure, system leakage, and unauthorized access, are pervasive, highlighting the need for secure-by-default frameworks and stronger deployment practices. Conclusions: Public-facing LLM deployments suffer from widespread security and configuration flaws, exposing services to misuse, model theft, resource hijacking, and remote exploitation. Strengthening default security, deployment practices, and operational standards is critical for the growing self-hosted LLM ecosystem.
Related papers
- Comprehensive Vulnerability Analysis is Necessary for Trustworthy LLM-MAS [28.69485468744812]
Large Language Model-based Multi-Agent Systems (LLM-MAS) are increasingly deployed in high-stakes applications.<n>LLM-MAS introduces unique attack surfaces through inter-agent communication, trust relationships, and tool integration.<n>This paper presents a systematic framework for vulnerability analysis of LLM-MAS that unifies diverse research.
arXiv Detail & Related papers (2025-06-02T01:46:15Z) - LLM Agents Should Employ Security Principles [60.03651084139836]
This paper argues that the well-established design principles in information security should be employed when deploying Large Language Model (LLM) agents at scale.<n>We introduce AgentSandbox, a conceptual framework embedding these security principles to provide safeguards throughout an agent's life-cycle.
arXiv Detail & Related papers (2025-05-29T21:39:08Z) - A Survey of Attacks on Large Language Models [5.845689496906739]
Large language models (LLMs) and LLM-based agents have been widely deployed in a wide range of applications in the real world.<n>This paper provides a systematic overview of the details of adversarial attacks targeting both LLMs and LLM-based agents.
arXiv Detail & Related papers (2025-05-18T22:55:16Z) - Datenschutzkonformer LLM-Einsatz: Eine Open-Source-Referenzarchitektur [0.10713888959520207]
We present a reference architecture for developing closed, LLM-based systems using open-source technologies.<n>The architecture provides a flexible and transparent solution that meets strict data privacy and security requirements.
arXiv Detail & Related papers (2025-03-01T14:51:07Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)<n>In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.<n>We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)
We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.
Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
We investigate the security implications of and software-based Open Radio Access Network (RAN) systems.
We highlight the presence of potential vulnerabilities and misconfigurations in the infrastructure supporting the Near Real-Time RAN Controller (RIC) cluster.
arXiv Detail & Related papers (2024-05-03T07:18:45Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - A New Era in LLM Security: Exploring Security Concerns in Real-World
LLM-based Systems [47.18371401090435]
We analyze the security of Large Language Model (LLM) systems, instead of focusing on the individual LLMs.
We propose a multi-layer and multi-step approach and apply it to the state-of-art OpenAI GPT4.
We found that although the OpenAI GPT4 has designed numerous safety constraints to improve its safety features, these safety constraints are still vulnerable to attackers.
arXiv Detail & Related papers (2024-02-28T19:00:12Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.