Recursive Decomposition with Dependencies for Generic Divide-and-Conquer Reasoning
- URL: http://arxiv.org/abs/2505.02576v1
- Date: Mon, 05 May 2025 11:24:20 GMT
- Title: Recursive Decomposition with Dependencies for Generic Divide-and-Conquer Reasoning
- Authors: Sergio Hernández-Gutiérrez, Minttu Alakuijala, Alexander V. Nikitin, Pekka Marttinen,
- Abstract summary: We introduce Recursive Decomposition with Dependencies (RDD), a scalable divide-and-conquer method for solving reasoning problems.<n>RDD can be directly applied to a new problem class even in the absence of any task-specific guidance.<n>We evaluate our approach on two benchmarks with six difficulty levels each and in two in-context settings.
- Score: 48.829971427616854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning tasks are crucial in many domains, especially in science and engineering. Although large language models (LLMs) have made progress in reasoning tasks using techniques such as chain-of-thought and least-to-most prompting, these approaches still do not effectively scale to complex problems in either their performance or execution time. Moreover, they often require additional supervision for each new task, such as in-context examples. In this work, we introduce Recursive Decomposition with Dependencies (RDD), a scalable divide-and-conquer method for solving reasoning problems that requires less supervision than prior approaches. Our method can be directly applied to a new problem class even in the absence of any task-specific guidance. Furthermore, RDD supports sub-task dependencies, allowing for ordered execution of sub-tasks, as well as an error recovery mechanism that can correct mistakes made in previous steps. We evaluate our approach on two benchmarks with six difficulty levels each and in two in-context settings: one with task-specific examples and one without. Our results demonstrate that RDD outperforms other methods in a compute-matched setting as task complexity increases, while also being more computationally efficient.
Related papers
- Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router [9.580226379350737]
Multi-step reasoning has proven essential for enhancing the problem-solving capabilities of Large Language Models.<n>Yet, many reasoning steps are relatively simple and can be handled by more efficient smaller-scale language models.<n>We propose R2-Reasoner, a novel framework that enables collaborative reasoning across heterogeneous LLMs.
arXiv Detail & Related papers (2025-06-06T09:18:56Z) - Learning Policy Committees for Effective Personalization in MDPs with Diverse Tasks [40.2989900672992]
We propose a novel approach for learning a policy committee that includes at least one near-optimal policy with high probability for tasks encountered during execution.<n>Our experiments on MuJoCo and Meta-World show that the proposed approach outperforms state-of-the-art multi-task, meta-, and task clustering baselines in training, generalization, and few-shot learning.
arXiv Detail & Related papers (2025-02-26T22:45:25Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Task Difficulty Aware Parameter Allocation & Regularization for Lifelong
Learning [20.177260510548535]
We propose the Allocation & Regularization (PAR), which adaptively select an appropriate strategy for each task from parameter allocation and regularization based on its learning difficulty.
Our method is scalable and significantly reduces the model's redundancy while improving the model's performance.
arXiv Detail & Related papers (2023-04-11T15:38:21Z) - Robust Subtask Learning for Compositional Generalization [20.54144051436337]
We focus on the problem of training subtask policies in a way that they can be used to perform any task.
We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance.
arXiv Detail & Related papers (2023-02-06T18:19:25Z) - Decomposed Prompting: A Modular Approach for Solving Complex Tasks [55.42850359286304]
We propose Decomposed Prompting to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks.
This modular structure allows each prompt to be optimized for its specific sub-task.
We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting.
arXiv Detail & Related papers (2022-10-05T17:28:20Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
We present a theoretical analysis suggesting that many specialized multi-tasks can be interpreted as forms of regularization.
We show that, when coupled with standard regularization and stabilization techniques, unitary scalarization matches or improves upon the performance of complex multitasks.
arXiv Detail & Related papers (2022-01-11T18:44:17Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.