Decomposed Prompting: A Modular Approach for Solving Complex Tasks
- URL: http://arxiv.org/abs/2210.02406v2
- Date: Tue, 11 Apr 2023 19:39:17 GMT
- Title: Decomposed Prompting: A Modular Approach for Solving Complex Tasks
- Authors: Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle
Richardson, Peter Clark, Ashish Sabharwal
- Abstract summary: We propose Decomposed Prompting to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks.
This modular structure allows each prompt to be optimized for its specific sub-task.
We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting.
- Score: 55.42850359286304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot prompting is a surprisingly powerful way to use Large Language
Models (LLMs) to solve various tasks. However, this approach struggles as the
task complexity increases or when the individual reasoning steps of the task
themselves are hard to learn, especially when embedded in more complex tasks.
To address this, we propose Decomposed Prompting, a new approach to solve
complex tasks by decomposing them (via prompting) into simpler sub-tasks that
can be delegated to a library of prompting-based LLMs dedicated to these
sub-tasks. This modular structure allows each prompt to be optimized for its
specific sub-task, further decomposed if necessary, and even easily replaced
with more effective prompts, trained models, or symbolic functions if desired.
We show that the flexibility and modularity of Decomposed Prompting allows it
to outperform prior work on few-shot prompting using GPT3. On symbolic
reasoning tasks, we can further decompose sub-tasks that are hard for LLMs into
even simpler solvable sub-tasks. When the complexity comes from the input
length, we can recursively decompose the task into the same task but with
smaller inputs. We also evaluate our approach on textual multi-step reasoning
tasks: on long-context multi-hop QA task, we can more effectively teach the
sub-tasks via our separate sub-tasks prompts; and on open-domain multi-hop QA,
we can incorporate a symbolic information retrieval within our decomposition
framework, leading to improved performance on both tasks. Datasets, Code and
Prompts available at https://github.com/allenai/DecomP.
Related papers
- PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
Incremental Learning (IL) aims to learn deep models on sequential tasks continually.
Recent vast pre-trained models (PTMs) have achieved outstanding performance by prompt technique in practical IL without the old samples.
arXiv Detail & Related papers (2024-07-04T10:37:58Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language.
LLMs have achieved impressive performance in computer programs based on a natural language prompt.
This paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks.
arXiv Detail & Related papers (2023-12-17T17:26:50Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z) - TransPrompt v2: A Transferable Prompting Framework for Cross-task Text
Classification [37.824031151922604]
We propose TransPrompt v2, a novel transferable prompting framework for few-shot learning across similar or distant text classification tasks.
For learning across similar tasks, we employ a multi-task meta-knowledge acquisition (MMA) procedure to train a meta-learner.
For learning across distant tasks, we inject the task type descriptions into the prompt, and capture the intra-type and inter-type prompt embeddings.
arXiv Detail & Related papers (2023-08-29T04:16:57Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
arXiv Detail & Related papers (2023-06-08T13:10:00Z) - Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition [11.998708550268978]
We propose an approach which uses an expert-provided decomposition of a task into simpler multi-agent sub-tasks.
In each sub-task, a subset of the entire team is trained to acquire sub-task-specific policies.
The sub-teams are then merged and transferred to the target task, where their policies are collectively fine-tuned to solve the more complex target task.
arXiv Detail & Related papers (2023-02-09T21:24:56Z) - Improving Task Generalization via Unified Schema Prompt [87.31158568180514]
Unified Prompt is a flexible and prompting method, which automatically customizes the learnable prompts for each task according to the task input schema.
It models the shared knowledge between tasks, while keeping the characteristics of different task schema.
The framework achieves strong zero-shot and few-shot performance on 16 unseen tasks downstream from 8 task types.
arXiv Detail & Related papers (2022-08-05T15:26:36Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.