論文の概要: Ensemble Kalman filter for uncertainty in human language comprehension
- arxiv url: http://arxiv.org/abs/2505.02590v1
- Date: Mon, 05 May 2025 11:56:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.666211
- Title: Ensemble Kalman filter for uncertainty in human language comprehension
- Title(参考訳): 人間の言語理解における不確実性のためのアンサンブルカルマンフィルタ
- Authors: Diksha Bhandari, Alessandro Lopopolo, Milena Rabovsky, Sebastian Reich,
- Abstract要約: 文理解のためのベイズ的枠組みを提案し,不確実性を定量化するためにアンサンブルカルマンフィルタ(EnKF)の拡張を適用した。
ベイジアン逆問題として言語理解をフレーミングすることにより、不確実性の表現に関して人文処理を反映するSGモデルの能力を向上する。
- 参考スコア(独自算出の注目度): 39.781091151259766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks (ANNs) are widely used in modeling sentence processing but often exhibit deterministic behavior, contrasting with human sentence comprehension, which manages uncertainty during ambiguous or unexpected inputs. This is exemplified by reversal anomalies-sentences with unexpected role reversals that challenge syntax and semantics-highlighting the limitations of traditional ANN models, such as the Sentence Gestalt (SG) Model. To address these limitations, we propose a Bayesian framework for sentence comprehension, applying an extension of the ensemble Kalman filter (EnKF) for Bayesian inference to quantify uncertainty. By framing language comprehension as a Bayesian inverse problem, this approach enhances the SG model's ability to reflect human sentence processing with respect to the representation of uncertainty. Numerical experiments and comparisons with maximum likelihood estimation (MLE) demonstrate that Bayesian methods improve uncertainty representation, enabling the model to better approximate human cognitive processing when dealing with linguistic ambiguities.
- Abstract(参考訳): 人工ニューラルネットワーク(ANN)は、文処理のモデリングに広く用いられているが、人間の文章理解とは対照的に、不明瞭な入力や予期しない入力の間の不確実性を管理する決定論的行動を示すことが多い。
これは、構文とセマンティクスに挑戦する予期せぬロール逆転を持つ逆転異常文によって実証され、SGモデルのような従来のANNモデルの制限が強調される。
これらの制約に対処するために,不確実性を定量化するために,アンサンブルカルマンフィルタ(EnKF)の拡張を適用したベイズ的文理解フレームワークを提案する。
ベイジアン逆問題として言語理解をフレーミングすることにより、不確実性の表現に関して人文処理を反映するSGモデルの能力を向上する。
数値実験と最大推定(MLE)との比較により、ベイジアン法は不確実性表現を改善し、言語的曖昧性を扱う際の人間の認知処理をよりよく近似させることができることを示した。
関連論文リスト
- On Subjective Uncertainty Quantification and Calibration in Natural Language Generation [2.622066970118316]
大規模言語モデルは多くの場合、不確実な定量化が困難になるような自由形式の応答を生成する。
この研究はベイズ決定論の観点からこれらの課題に対処する。
本稿では,モデルの主観的不確実性とそのキャリブレーションを原理的に定量化する方法について論じる。
提案手法はブラックボックス言語モデルに適用できる。
論文 参考訳(メタデータ) (2024-06-07T18:54:40Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
本稿では,効率的かつ高精度な不確実性定量化を深層学習に基づく代理モデルに統合する手法を提案する。
本手法は,フォワード問題と逆問題の両方に対して,堅牢かつ効率的な不確実性定量化機能を備えたディープラーニングに基づく代理モデルを提案する。
提案手法は, 長期予測を含むシナリオに適合し, 拡張された自己回帰ロールアウトに対する不確かさの伝播に優れる。
論文 参考訳(メタデータ) (2024-02-13T11:22:59Z) - Modeling Uncertainty in Personalized Emotion Prediction with Normalizing
Flows [6.32047610997385]
本研究では,条件付き正規化フローを用いて予測の不確かさを捉える新しい手法を提案する。
感情認識とヘイトスピーチを含む3つの主観的NLP課題に対して,本手法の有効性を検証した。
開発した手法によって得られた情報により,従来の手法を超越したハイブリッドモデルの構築が可能となった。
論文 参考訳(メタデータ) (2023-12-10T23:21:41Z) - CUE: An Uncertainty Interpretation Framework for Text Classifiers Built
on Pre-Trained Language Models [28.750894873827068]
本稿では,PLMモデルに固有の不確かさを解釈することを目的とした,CUEと呼ばれる新しいフレームワークを提案する。
摂動と原文表現の予測不確実性の違いを比較することにより,不確実性の原因となる潜伏次元を同定することができる。
論文 参考訳(メタデータ) (2023-06-06T11:37:46Z) - Uncertainty-Aware Natural Language Inference with Stochastic Weight
Averaging [8.752563431501502]
本稿では,自然言語理解(NLU)タスクにおけるウェイト平均ガウス(SWAG)を用いたベイズ的不確実性モデリングを提案する。
提案手法の有効性を,ヒトのアノテーションの不一致に対する予測精度と相関性の観点から示す。
論文 参考訳(メタデータ) (2023-04-10T17:37:23Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z) - Discrete Variational Attention Models for Language Generation [51.88612022940496]
本稿では,言語における離散性に起因する注意機構のカテゴリー分布を考慮した離散的変動注意モデルを提案する。
離散性の特質により,提案手法の訓練は後部崩壊に支障を来さない。
論文 参考訳(メタデータ) (2020-04-21T05:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。