Enhancing Chemical Reaction and Retrosynthesis Prediction with Large Language Model and Dual-task Learning
- URL: http://arxiv.org/abs/2505.02639v1
- Date: Mon, 05 May 2025 13:31:36 GMT
- Title: Enhancing Chemical Reaction and Retrosynthesis Prediction with Large Language Model and Dual-task Learning
- Authors: Xuan Lin, Qingrui Liu, Hongxin Xiang, Daojian Zeng, Xiangxiang Zeng,
- Abstract summary: Large language models (LLMs) have shown potential in many domains.<n>ChemDual is a novel framework for accurate chemical synthesis.<n>ChemDual achieves state-of-the-art performance in both predictions of reaction and retrosynthesis.
- Score: 8.402406301818905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chemical reaction and retrosynthesis prediction are fundamental tasks in drug discovery. Recently, large language models (LLMs) have shown potential in many domains. However, directly applying LLMs to these tasks faces two major challenges: (i) lacking a large-scale chemical synthesis-related instruction dataset; (ii) ignoring the close correlation between reaction and retrosynthesis prediction for the existing fine-tuning strategies. To address these challenges, we propose ChemDual, a novel LLM framework for accurate chemical synthesis. Specifically, considering the high cost of data acquisition for reaction and retrosynthesis, ChemDual regards the reaction-and-retrosynthesis of molecules as a related recombination-and-fragmentation process and constructs a large-scale of 4.4 million instruction dataset. Furthermore, ChemDual introduces an enhanced LLaMA, equipped with a multi-scale tokenizer and dual-task learning strategy, to jointly optimize the process of recombination and fragmentation as well as the tasks between reaction and retrosynthesis prediction. Extensive experiments on Mol-Instruction and USPTO-50K datasets demonstrate that ChemDual achieves state-of-the-art performance in both predictions of reaction and retrosynthesis, outperforming the existing conventional single-task approaches and the general open-source LLMs. Through molecular docking analysis, ChemDual generates compounds with diverse and strong protein binding affinity, further highlighting its strong potential in drug design.
Related papers
- ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
We present ChemActor, a fully fine-tuned large language model (LLM) as a chemical executor to convert between unstructured experimental procedures and structured action sequences.<n>This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input.<n>Experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor achieves state-of-the-art performance, outperforming the baseline model by 10%.
arXiv Detail & Related papers (2025-06-30T05:11:19Z) - LLM-Augmented Chemical Synthesis and Design Decision Programs [18.41721617026997]
We introduce an efficient scheme for encoding reaction pathways and present a new route-level search strategy.<n>We show that our LLM-augmented approach excels at retrosynthesis planning and extends naturally to the broader challenge of synthesizable molecular design.
arXiv Detail & Related papers (2025-05-11T15:43:00Z) - Interpretable Deep Learning for Polar Mechanistic Reaction Prediction [43.95903801494905]
We introduce PMechRP (Polar Mechanistic Reaction Predictor), a system that trains machine learning models on the PMechDB dataset.<n>We train compare a range of machine learning models, including transformer-based, graph-based and two-step siamese architectures.<n>Our best-performing approach was a hybrid model, which combines a 5-ensemble of Chemformer models with a two-step Siamese framework.
arXiv Detail & Related papers (2025-04-22T02:31:23Z) - Automated Retrosynthesis Planning of Macromolecules Using Large Language Models and Knowledge Graphs [11.191853171170516]
We propose an agent system that integrates large language models (LLMs) and knowledge graphs.<n>Our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees.<n>This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs.
arXiv Detail & Related papers (2025-01-15T16:06:10Z) - Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
RAlign is a novel chemical reaction representation learning model for various organic reaction-related tasks.<n>By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction.<n>We introduce a reaction-center-aware attention mechanism that enables the model to concentrate on key functional groups.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCR is a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR)
Our results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets.
arXiv Detail & Related papers (2024-07-21T12:27:26Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining [56.15126714863963]
ChemMiner is an end-to-end framework for extracting chemical data from literature.<n>ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation.<n> Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Predictive Synthesis of Quantum Materials by Probabilistic Reinforcement
Learning [1.4680035572775534]
We use reinforcement learning to predict optimal synthesis schedules for a prototypical quantum material, semiconducting monolayer MoS$_2$.
The model can be extended to predict profiles for synthesis of complex structures including multi-phase heterostructures.
arXiv Detail & Related papers (2020-09-14T20:50:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.