論文の概要: Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
- arxiv url: http://arxiv.org/abs/2505.02743v1
- Date: Mon, 05 May 2025 15:50:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.733043
- Title: Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
- Title(参考訳): 協調ベイズと分散ネットワークは、アレタリックとてんかんの不確かさを解き放つ
- Authors: Jiaxiang Yi, Miguel A. Bessa,
- Abstract要約: 実世界のデータは、不完全な測定やデータ生成プロセスに関する不完全な知識から生じる、アレラトリックな不確実性を含んでいる。
平均分散推定(MVE)ネットワークは、このような不確実性を学ぶことができるが、過度な適合を避けるためには、アドホックな正規化戦略を必要とする。
ベイズニューラルネットワークを用いて分散ネットワークを訓練し、その結果のモデルが平均推定を改善しつつ、アレタリックおよびてんかんの不確かさを解き放つことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world data contains aleatoric uncertainty - irreducible noise arising from imperfect measurements or from incomplete knowledge about the data generation process. Mean variance estimation (MVE) networks can learn this type of uncertainty but require ad-hoc regularization strategies to avoid overfitting and are unable to predict epistemic uncertainty (model uncertainty). Conversely, Bayesian neural networks predict epistemic uncertainty but are notoriously difficult to train due to the approximate nature of Bayesian inference. We propose to cooperatively train a variance network with a Bayesian neural network and demonstrate that the resulting model disentangles aleatoric and epistemic uncertainties while improving the mean estimation. We demonstrate the effectiveness and scalability of this method across a diverse range of datasets, including a time-dependent heteroscedastic regression dataset we created where the aleatoric uncertainty is known. The proposed method is straightforward to implement, robust, and adaptable to various model architectures.
- Abstract(参考訳): 実世界のデータは、不完全な測定やデータ生成プロセスに関する不完全な知識から生じる、アレラトリックな不確実性を含んでいる。
平均分散推定(MVE)ネットワークは、このような不確実性を学ぶことができるが、過度な適合を避けるためにアドホックな正規化戦略が必要であり、てんかんの不確実性(モデル不確実性)を予測できない。
逆に、ベイズニューラルネットワークは、疫学的な不確実性を予測するが、ベイズ推論の近似的な性質のため、訓練が難しいことが知られている。
本稿では,ベイズニューラルネットワークを用いて分散ネットワークを協調的に訓練し,その結果のモデルが平均推定を改善しつつ,失語症とてんかんの不確かさを解消することを実証する。
我々は,この手法の有効性とスケーラビリティを多種多様なデータセットにわたって示す。
提案手法は, 実装が容易で, 堅牢で, 様々なモデルアーキテクチャに適用可能である。
関連論文リスト
- One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
時間周波数領域における監視されたマスキングアプローチは、ディープニューラルネットワークを使用して乗法マスクを推定し、クリーンな音声を抽出することを目的としている。
これにより、信頼性の保証や尺度を使わずに、各入力に対する単一の見積もりが導かれる。
クリーン音声推定における不確実性モデリングの利点について検討する。
論文 参考訳(メタデータ) (2023-05-15T15:55:12Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Looking at the posterior: accuracy and uncertainty of neural-network
predictions [0.0]
予測精度はてんかんとアレタリック不確実性の両方に依存している。
本稿では,共通不確実性に基づく手法よりも優れた新たな獲得関数を提案する。
論文 参考訳(メタデータ) (2022-11-26T16:13:32Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。