Local Markov Equivalence and Local Causal Discovery for Identifying Controlled Direct Effects
- URL: http://arxiv.org/abs/2505.02781v2
- Date: Fri, 27 Jun 2025 14:13:05 GMT
- Title: Local Markov Equivalence and Local Causal Discovery for Identifying Controlled Direct Effects
- Authors: Timothée Loranchet, Charles K. Assaad,
- Abstract summary: We present a novel algorithm for identifying controlled direct effects (CDEs)<n>Our algorithms require less conditional independence tests and operate under weaker assumptions while maintaining theoretical guarantees.<n>We illustrate the effectiveness of our approach through simulation studies.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and identifying controlled direct effects (CDEs) is crucial across numerous scientific domains, including public health. While existing methods can identify these effects from causal directed acyclic graphs (DAGs), the true underlying structure is often unknown in practice. Essential graphs, which represent a Markov equivalence class of DAGs characterized by the same set of $d$-separations, provide a more practical and realistic alternative. However, learning the full essential graph is computationally intensive and typically depends on strong, untestable assumptions. In this work, we characterize a local class of graphs, defined relative to a target variable, that share a specific subset of $d$-separations, and introduce a graphical representation of this class, called the local essential graph (LEG). We then present LocPC, a novel algorithm designed to recover the LEG from an observed distribution using only local conditional independence tests. Building on LocPC, we propose LocPC-CDE, an algorithm that discovers the portion of the LEG that is both sufficient and necessary to identify a CDE, bypassing the need of retrieving the full essential graph. Compared to global methods, our algorithms require less conditional independence tests and operate under weaker assumptions while maintaining theoretical guarantees. We illustrate the effectiveness of our approach through simulation studies.
Related papers
- Dissecting the Failure of Invariant Learning on Graphs [36.11431280689549]
We develop a Structural Causal Model (SCM) to theoretically dissect the performance of two prominent invariant learning methods.<n>We propose Cross-environment Intra-class Alignment (CIA), which explicitly eliminates spurious features by aligning cross-environment representations conditioned on the same class.<n>We further propose CIA-LRA (Localized Reweighting Alignment) that leverages the distribution of neighboring labels to selectively align node representations.
arXiv Detail & Related papers (2024-11-05T06:36:48Z) - DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization [44.291382840373]
This paper addresses the challenge of out-of-distribution generalization in graph machine learning.
Traditional graph learning algorithms falter in real-world scenarios where this assumption fails.
A principal factor contributing to this suboptimal performance is the inherent simplicity bias of neural networks.
arXiv Detail & Related papers (2024-08-08T12:08:55Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - A Graph-Theoretic Framework for Understanding Open-World Semi-Supervised
Learning [33.05104609131764]
Open-world semi-supervised learning aims at inferring both known and novel classes in unlabeled data.
This paper formalizes a graph-theoretic framework tailored for the open-world setting.
Our graph-theoretic framework illuminates practical algorithms and provides guarantees.
arXiv Detail & Related papers (2023-11-06T21:15:09Z) - Joint Learning of Label and Environment Causal Independence for Graph
Out-of-Distribution Generalization [60.4169201192582]
We propose to incorporate label and environment causal independence (LECI) to fully make use of label and environment information.
LECI significantly outperforms prior methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-01T19:33:30Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
Graph contrastive learning (GCL) has emerged as a promising self-supervised approach for learning node representations.
We show that representations obtained by GCL methods are already fairer to degree bias than those learned by GCN.
We devise a novel graph augmentation method, called GRAph contrastive learning for DEgree bias (GRADE), which applies different strategies to low- and high-degree nodes.
arXiv Detail & Related papers (2022-10-06T15:58:25Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
We propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning.
Besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters.
An efficient online expectation-maximization (EM) algorithm is further developed for learning the model.
arXiv Detail & Related papers (2021-06-08T05:25:38Z) - A Local Method for Identifying Causal Relations under Markov Equivalence [7.904790547594697]
Causality is important for designing interpretable and robust methods in artificial intelligence research.
We propose a local approach to identify whether a variable is a cause of a given target based on causal graphical models of directed acyclic graphs (DAGs)
arXiv Detail & Related papers (2021-02-25T05:01:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.