Unsupervised training of keypoint-agnostic descriptors for flexible retinal image registration
- URL: http://arxiv.org/abs/2505.02787v1
- Date: Mon, 05 May 2025 17:02:13 GMT
- Title: Unsupervised training of keypoint-agnostic descriptors for flexible retinal image registration
- Authors: David Rivas-Villar, Álvaro S. Hervella, José Rouco, Jorge Novo,
- Abstract summary: We develop a novel unsupervised descriptor learning method that does not rely on keypoint detection.<n>This enables the resulting descriptor network to be agnostic to the keypoint detector used during the registration inference.<n>Our results demonstrate that the proposed approach offers accurate registration, not incurring in any performance loss versus supervised methods.
- Score: 6.618504904743609
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current color fundus image registration approaches are limited, among other things, by the lack of labeled data, which is even more significant in the medical domain, motivating the use of unsupervised learning. Therefore, in this work, we develop a novel unsupervised descriptor learning method that does not rely on keypoint detection. This enables the resulting descriptor network to be agnostic to the keypoint detector used during the registration inference. To validate this approach, we perform an extensive and comprehensive comparison on the reference public retinal image registration dataset. Additionally, we test our method with multiple keypoint detectors of varied nature, even proposing some novel ones. Our results demonstrate that the proposed approach offers accurate registration, not incurring in any performance loss versus supervised methods. Additionally, it demonstrates accurate performance regardless of the keypoint detector used. Thus, this work represents a notable step towards leveraging unsupervised learning in the medical domain.
Related papers
- Rethinking Contrastive Learning in Graph Anomaly Detection: A Clean-View Perspective [54.605073936695575]
Graph anomaly detection aims to identify unusual patterns in graph-based data, with wide applications in fields such as web security and financial fraud detection.<n>Existing methods rely on contrastive learning, assuming that a lower similarity between a node and its local subgraph indicates abnormality.<n>The presence of interfering edges invalidates this assumption, since it introduces disruptive noise that compromises the contrastive learning process.<n>We propose a Clean-View Enhanced Graph Anomaly Detection framework (CVGAD), which includes a multi-scale anomaly awareness module to identify key sources of interference in the contrastive learning process.
arXiv Detail & Related papers (2025-05-23T15:05:56Z) - Unsupervised Deep Learning-based Keypoint Localization Estimating Descriptor Matching Performance [6.618504904743609]
We present a novel unsupervised registration pipeline for color fundus images.<n>Our approach is based on the principle that locations with distinctive descriptors constitute reliable keypoints.<n>We validate our method through a comprehensive evaluation on four hold-out datasets.
arXiv Detail & Related papers (2025-05-05T16:46:32Z) - Semi-weakly-supervised neural network training for medical image
registration [18.520388065729552]
This paper describes a semi-weakly-supervised registration pipeline that improves the model performance.
We examine two types of augmentation methods by perturbation on network weights and image resampling.
Experiments using 589 male pelvic MR images, labelled with eight anatomical ROIs, show the improvement in registration performance.
arXiv Detail & Related papers (2024-02-16T14:44:40Z) - ConKeD: Multiview contrastive descriptor learning for keypoint-based retinal image registration [6.618504904743609]
We propose ConKeD, a novel deep learning approach to learn descriptors for retinal image registration.
In contrast to current registration methods, our approach employs a novel multi-positive multi-negative contrastive learning strategy.
Our experimental results demonstrate the benefits of the novel multi-positive multi-negative strategy.
arXiv Detail & Related papers (2024-01-11T13:22:54Z) - CUCL: Codebook for Unsupervised Continual Learning [129.91731617718781]
The focus of this study is on Unsupervised Continual Learning (UCL), as it presents an alternative to Supervised Continual Learning.
We propose a method named Codebook for Unsupervised Continual Learning (CUCL) which promotes the model to learn discriminative features to complete the class boundary.
Our method significantly boosts the performances of supervised and unsupervised methods.
arXiv Detail & Related papers (2023-11-25T03:08:50Z) - Domain Adaptive Multiple Instance Learning for Instance-level Prediction
of Pathological Images [45.132775668689604]
We propose a new task setting to improve the classification performance of the target dataset without increasing annotation costs.
In order to combine the supervisory information of both methods effectively, we propose a method to create pseudo-labels with high confidence.
arXiv Detail & Related papers (2023-04-07T08:31:06Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning [51.07496081296863]
We recouple independent constraints of detection and description of multimodal feature learning with a mutual weighting strategy.
We propose a detector that possesses a large receptive field and is equipped with learnable non-maximum suppression layers.
We build a benchmark that contains cross visible, infrared, near-infrared and synthetic aperture radar image pairs for evaluating the performance of features in feature matching and image registration tasks.
arXiv Detail & Related papers (2022-05-16T04:24:22Z) - The Familiarity Hypothesis: Explaining the Behavior of Deep Open Set
Methods [86.39044549664189]
Anomaly detection algorithms for feature-vector data identify anomalies as outliers, but outlier detection has not worked well in deep learning.
This paper proposes the Familiarity Hypothesis that these methods succeed because they are detecting the absence of familiar learned features rather than the presence of novelty.
The paper concludes with a discussion of whether familiarity detection is an inevitable consequence of representation learning.
arXiv Detail & Related papers (2022-03-04T18:32:58Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
We propose a simple, yet effective method named contrasting shifted instances (CSI)
In addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself.
Our experiments demonstrate the superiority of our method under various novelty detection scenarios.
arXiv Detail & Related papers (2020-07-16T08:32:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.