A Computational Model of Inclusive Pedagogy: From Understanding to Application
- URL: http://arxiv.org/abs/2505.02853v1
- Date: Fri, 02 May 2025 12:26:31 GMT
- Title: A Computational Model of Inclusive Pedagogy: From Understanding to Application
- Authors: Francesco Balzan, Pedro P. Santos, Maurizio Gabbrielli, Mahault Albarracin, Manuel Lopes,
- Abstract summary: Human education transcends mere knowledge transfer, it relies on co-adaptation dynamics.<n>Despite its centrality, computational models of co-adaptive teacher-student interactions (T-SI) remain underdeveloped.<n>We present a computational T-SI model that integrates contextual insights on human education into a testable framework.
- Score: 1.2058600649065616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human education transcends mere knowledge transfer, it relies on co-adaptation dynamics -- the mutual adjustment of teaching and learning strategies between agents. Despite its centrality, computational models of co-adaptive teacher-student interactions (T-SI) remain underdeveloped. We argue that this gap impedes Educational Science in testing and scaling contextual insights across diverse settings, and limits the potential of Machine Learning systems, which struggle to emulate and adaptively support human learning processes. To address this, we present a computational T-SI model that integrates contextual insights on human education into a testable framework. We use the model to evaluate diverse T-SI strategies in a realistic synthetic classroom setting, simulating student groups with unequal access to sensory information. Results show that strategies incorporating co-adaptation principles (e.g., bidirectional agency) outperform unilateral approaches (i.e., where only the teacher or the student is active), improving the learning outcomes for all learning types. Beyond the testing and scaling of context-dependent educational insights, our model enables hypothesis generation in controlled yet adaptable environments. This work bridges non-computational theories of human education with scalable, inclusive AI in Education systems, providing a foundation for equitable technologies that dynamically adapt to learner needs.
Related papers
- When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
We introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities.<n>We conduct the first large-scale human study (N=118) explicitly designed to measure it.<n>In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding.
arXiv Detail & Related papers (2025-06-05T20:48:16Z) - A Human-Centric Approach to Explainable AI for Personalized Education [1.0878040851638]
This thesis aims to bring human needs to the forefront of eXplainable AI (XAI) research.<n>We propose four novel technical contributions in interpretability with a multimodal modular architecture.<n>Our work lays a foundation for human-centric AI systems that balance state-of-the-art performance with built-in transparency and trust.
arXiv Detail & Related papers (2025-05-28T16:23:48Z) - Investigating Pedagogical Teacher and Student LLM Agents: Genetic Adaptation Meets Retrieval Augmented Generation Across Learning Style [16.985943868964394]
Effective teaching requires adapting instructional strategies to accommodate the diverse cognitive and behavioral profiles of students.<n>This paper introduces a novel simulation framework that integrates heterogeneous student agents with a self-optimizing teacher agent.<n>Our results highlight the potential of LLM-driven simulations to inform adaptive teaching practices and provide a testbed for training human educators in data-driven environments.
arXiv Detail & Related papers (2025-05-25T14:45:35Z) - Advancing Education through Tutoring Systems: A Systematic Literature Review [3.276010440333338]
This study systematically reviews the transformative role of Tutoring Systems, encompassing Intelligent Tutoring Systems (ITS) and Robot Tutoring Systems (RTS)<n>The findings reveal significant advancements in AI techniques that enhance adaptability, engagement, and learning outcomes.<n>The study highlights the complementary strengths of ITS and RTS, proposing integrated hybrid solutions to maximize educational benefits.
arXiv Detail & Related papers (2025-03-12T18:47:07Z) - Training a Generally Curious Agent [86.84089201249104]
We present PAPRIKA, a fine-tuning approach that enables language models to develop general decision-making capabilities.<n> Experimental results show that models fine-tuned with PAPRIKA can effectively transfer their learned decision-making capabilities to entirely unseen tasks.<n>These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems.
arXiv Detail & Related papers (2025-02-24T18:56:58Z) - Education in the Era of Neurosymbolic AI [0.6468510459310326]
We propose a system that leverages the unique affordances of pedagogical agents as critical components of a hybrid NAI architecture.
We conclude that education in the era of NAI will make learning more accessible, equitable, and aligned with real-world skills.
arXiv Detail & Related papers (2024-11-16T19:18:39Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
We introduce a suite of models and evaluation methods we call AdapT.
AToM is a new probabilistic model for adaptive teaching that jointly infers students' past beliefs and optimize for the correctness of future beliefs.
Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive models for solving it.
arXiv Detail & Related papers (2024-05-07T17:05:27Z) - The dynamic interplay between in-context and in-weight learning in humans and neural networks [15.744573869783972]
We show that "in-context learning" (ICL) can equip neural networks with fundamentally different learning properties that can coexist with their native IWL.<n>Our work shows how emergent ICL can equip neural networks with fundamentally different learning properties that can coexist with their native IWL.
arXiv Detail & Related papers (2024-02-13T18:55:27Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Modeling Pedagogical Learning Environment with Hybrid Model based on ICT [0.0]
We have designed the pedagogical learning environment from the perspective of ICT education.
In our methodology of the pedagogy for ICT, education includes the interaction among different elements.
The hybrid model represents the combination of standards, stages, year level, and class level as well as brings it into one umbrella.
arXiv Detail & Related papers (2021-08-09T11:24:27Z) - RLTutor: Reinforcement Learning Based Adaptive Tutoring System by
Modeling Virtual Student with Fewer Interactions [10.34673089426247]
We propose a framework for optimizing teaching strategies by constructing a virtual model of the student.
Our results can serve as a buffer between theoretical instructional optimization and practical applications in e-learning systems.
arXiv Detail & Related papers (2021-07-31T15:42:03Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.