Modeling Pedagogical Learning Environment with Hybrid Model based on ICT
- URL: http://arxiv.org/abs/2108.07793v3
- Date: Fri, 27 Aug 2021 09:28:28 GMT
- Title: Modeling Pedagogical Learning Environment with Hybrid Model based on ICT
- Authors: Al Maruf Hassan and Istiak Ahmed Mondal
- Abstract summary: We have designed the pedagogical learning environment from the perspective of ICT education.
In our methodology of the pedagogy for ICT, education includes the interaction among different elements.
The hybrid model represents the combination of standards, stages, year level, and class level as well as brings it into one umbrella.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedagogy is a method that handles the ethos and culture of instruction from
educators and the learning of learners. Pedagogy of Information and
Communications Technology (ICT) refers to the interactions among the teacher,
children, and learning environment based on ICT. It is a discipline that deals
with the theory and practice of teaching strategies, teaching actions, teaching
judgments, and decisions. It is also the understanding and needs of students as
well as the background and interests of an individual one. In this paper, we
have designed the pedagogical learning environment from the perspective of ICT
education. In our methodology of the pedagogy for ICT, education includes the
interaction among different elements. The methodology improves to propagate
convenience differently into the educational environment. We are also building
a hybrid model for the ICT development program. The hybrid model represents the
combination of standards, stages, year level, and class level as well as brings
it into one umbrella. We have constructed the pedagogical learning environment
theoretically from the perspective of ICT education to the consideration of
outcome-based ICT learning. Outcome-based education is a fundamental element
for building any nation completely around the globe.
Related papers
- Benchmarking the Pedagogical Knowledge of Large Language Models [4.417539128489408]
This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their pedagogical knowledge.<n>These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers.<n>We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions.
arXiv Detail & Related papers (2025-06-23T14:49:01Z) - A Computational Model of Inclusive Pedagogy: From Understanding to Application [1.2058600649065616]
Human education transcends mere knowledge transfer, it relies on co-adaptation dynamics.<n>Despite its centrality, computational models of co-adaptive teacher-student interactions (T-SI) remain underdeveloped.<n>We present a computational T-SI model that integrates contextual insights on human education into a testable framework.
arXiv Detail & Related papers (2025-05-02T12:26:31Z) - Form-Substance Discrimination: Concept, Cognition, and Pedagogy [55.2480439325792]
This paper examines form-substance discrimination as an essential learning outcome for curriculum development in higher education.
We propose practical strategies for fostering this ability through curriculum design, assessment practices, and explicit instruction.
arXiv Detail & Related papers (2025-04-01T04:15:56Z) - AI and personalized learning: bridging the gap with modern educational goals [1.1510009152620668]
We examine the characteristics of AI-driven personalized learning solutions in light of the OECD Learning Compass 2030 goals.
We identify areas where most present-day PL technologies could better embrace essential elements of contemporary education.
We propose a hybrid model that blends artificial intelligence with a collaborative, teacher-facilitated approach to personalized learning.
arXiv Detail & Related papers (2024-04-03T15:07:00Z) - Understanding the Progression of Educational Topics via Semantic Matching [0.9246281666115259]
Education systems are dynamically changing to accommodate technological advances, industrial and societal needs, and to enhance students' learning journeys.
Curriculum specialists and educators constantly revise taught subjects across educational grades to identify gaps, introduce new learning topics, and enhance the learning outcomes.
Having nuanced data about subjects, topics, and learning outcomes structured within a dataset, empowers us to leverage data science to better understand the progression of various learning topics.
arXiv Detail & Related papers (2024-02-10T08:24:29Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Strategize Before Teaching: A Conversational Tutoring System with
Pedagogy Self-Distillation [35.11534904787774]
We propose a unified framework that combines teaching response generation and pedagogical strategy prediction.
Our experiments and analyses shed light on how teaching strategies affect dialog tutoring.
arXiv Detail & Related papers (2023-02-27T03:43:25Z) - In-context Learning Distillation: Transferring Few-shot Learning Ability
of Pre-trained Language Models [55.78264509270503]
We introduce in-context learning distillation to transfer in-context few-shot learning ability from large models to smaller models.
We perform in-context learning distillation under two different few-shot learning paradigms: Meta In-context Tuning (Meta-ICT) and Multitask In-context Tuning (Multitask-ICT)
Our experiments and analysis reveal that in-context learning objectives and language modeling objectives are complementary under the Multitask-ICT paradigm.
arXiv Detail & Related papers (2022-12-20T22:11:35Z) - Learning Data Teaching Strategies Via Knowledge Tracing [5.648636668261282]
We propose a novel method, called Knowledge Augmented Data Teaching (KADT), to optimize a data teaching strategy for a student model.
The KADT method incorporates a knowledge tracing model to dynamically capture the knowledge progress of a student model in terms of latent learning concepts.
We have evaluated the performance of the KADT method on four different machine learning tasks including knowledge tracing, sentiment analysis, movie recommendation, and image classification.
arXiv Detail & Related papers (2021-11-13T10:10:48Z) - A Network Science Perspective to Personalized Learning [0.0]
We examine how learning objectives can be achieved through a learning platform that offers content choices and multiple modalities of engagement to support self-paced learning.
This framework brings the attention to learning experiences, rather than teaching experiences, by providing the learner engagement and content choices supported by a network of knowledge.
arXiv Detail & Related papers (2021-11-02T01:50:01Z) - Iterative Teacher-Aware Learning [136.05341445369265]
In human pedagogy, teachers and students can interact adaptively to maximize communication efficiency.
We propose a gradient optimization based teacher-aware learner who can incorporate teacher's cooperative intention into the likelihood function.
arXiv Detail & Related papers (2021-10-01T00:27:47Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
Personalization and active learning are key aspects to successful learning.
We run a comparative head-to-head study of learning outcomes for two popular online learning platforms.
arXiv Detail & Related papers (2021-04-15T20:40:24Z) - Interactive Knowledge Distillation [79.12866404907506]
We propose an InterActive Knowledge Distillation scheme to leverage the interactive teaching strategy for efficient knowledge distillation.
In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation.
Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods.
arXiv Detail & Related papers (2020-07-03T03:22:04Z) - Dual Policy Distillation [58.43610940026261]
Policy distillation, which transfers a teacher policy to a student policy, has achieved great success in challenging tasks of deep reinforcement learning.
In this work, we introduce dual policy distillation(DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment.
The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms.
arXiv Detail & Related papers (2020-06-07T06:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.