Early Prediction of Sepsis: Feature-Aligned Transfer Learning
- URL: http://arxiv.org/abs/2505.02889v1
- Date: Mon, 05 May 2025 17:59:34 GMT
- Title: Early Prediction of Sepsis: Feature-Aligned Transfer Learning
- Authors: Oyindolapo O. Komolafe, Zhimin Mei, David Morales Zarate, Gregory William Spangenberg,
- Abstract summary: Sepsis is a life threatening medical condition that occurs when the body has an extreme response to infection.<n>Current diagnostic methods often identify sepsis only after significant damage has already occurred.<n>Our project aims to develop a machine learning based system to predict sepsis in its early stages.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Sepsis is a life threatening medical condition that occurs when the body has an extreme response to infection, leading to widespread inflammation, organ failure, and potentially death. Because sepsis can worsen rapidly, early detection is critical to saving lives. However, current diagnostic methods often identify sepsis only after significant damage has already occurred. Our project aims to address this challenge by developing a machine learning based system to predict sepsis in its early stages, giving healthcare providers more time to intervene. A major problem with existing models is the wide variability in the patient information or features they use, such as heart rate, temperature, and lab results. This inconsistency makes models difficult to compare and limits their ability to work across different hospitals and settings. To solve this, we propose a method called Feature Aligned Transfer Learning (FATL), which identifies and focuses on the most important and commonly reported features across multiple studies, ensuring the model remains consistent and clinically relevant. Most existing models are trained on narrow patient groups, leading to population bias. FATL addresses this by combining knowledge from models trained on diverse populations, using a weighted approach that reflects each models contribution. This makes the system more generalizable and effective across different patient demographics and clinical environments. FATL offers a practical and scalable solution for early sepsis detection, particularly in hospitals with limited resources, and has the potential to improve patient outcomes, reduce healthcare costs, and support more equitable healthcare delivery.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - NPRL: Nightly Profile Representation Learning for Early Sepsis Onset
Prediction in ICU Trauma Patients [5.476582906474746]
Sepsis is a syndrome that develops in the body in response to the presence of an infection.
Current machine learning algorithms have demonstrated poor performance and are insufficient for anticipating sepsis onset early.
We propose a novel but realistic prediction framework that predicts sepsis onset each morning using the most recent data collected the previous night.
arXiv Detail & Related papers (2023-04-25T11:27:27Z) - ALRt: An Active Learning Framework for Irregularly Sampled Temporal Data [1.370633147306388]
Sepsis is a deadly condition affecting many patients in the hospital.
We propose the use of Active Learning Recurrent Neural Networks (ALRts) for short temporal horizons to improve the prediction of irregularly sampled temporal events such as sepsis.
We show that an active learning RNN model trained on limited data can form robust sepsis predictions comparable to models using the entire training dataset.
arXiv Detail & Related papers (2022-12-13T04:31:49Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Quantifying machine learning-induced overdiagnosis in sepsis [0.0]
We present an innovative approach that allows us to preemptively detect potential cases of overdiagnosis.
This is one of the first attempts to quantify machine-learning induced overdiagnosis.
arXiv Detail & Related papers (2021-07-03T11:55:55Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
Heart disease is one of the deadliest diseases which is hampering the lives of many people around the world.
This paper proposes a novel deep learning architecture using a 1D convolutional neural network for classification between healthy and non-healthy persons.
The proposed network achieves over 97% training accuracy and 96% test accuracy on the dataset.
arXiv Detail & Related papers (2021-05-22T22:00:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.