More Optimal Fractional-Order Stochastic Gradient Descent for Non-Convex Optimization Problems
- URL: http://arxiv.org/abs/2505.02985v1
- Date: Mon, 05 May 2025 19:27:36 GMT
- Title: More Optimal Fractional-Order Stochastic Gradient Descent for Non-Convex Optimization Problems
- Authors: Mohammad Partohaghighi, Roummel Marcia, YangQuan Chen,
- Abstract summary: We propose 2SED Fractional-Order Gradient Descent (2FOSGD), which integrates the Two-Scale Effective Dimension (2SED) with FOSGD.<n>By tracking sensitivity and effective dimensionality, 2SEDFOSGD dynamically modulates the exponent to mitigate sluggish oscillations and hasten convergence.
- Score: 2.5971517743176915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fractional-order stochastic gradient descent (FOSGD) leverages fractional exponents to capture long-memory effects in optimization. However, its utility is often limited by the difficulty of tuning and stabilizing these exponents. We propose 2SED Fractional-Order Stochastic Gradient Descent (2SEDFOSGD), which integrates the Two-Scale Effective Dimension (2SED) algorithm with FOSGD to adapt the fractional exponent in a data-driven manner. By tracking model sensitivity and effective dimensionality, 2SEDFOSGD dynamically modulates the exponent to mitigate oscillations and hasten convergence. Theoretically, for onoconvex optimization problems, this approach preserves the advantages of fractional memory without the sluggish or unstable behavior observed in na\"ive fractional SGD. Empirical evaluations in Gaussian and $\alpha$-stable noise scenarios using an autoregressive (AR) model highlight faster convergence and more robust parameter estimates compared to baseline methods, underscoring the potential of dimension-aware fractional techniques for advanced modeling and estimation tasks.
Related papers
- Effective Dimension Aware Fractional-Order Stochastic Gradient Descent for Convex Optimization Problems [2.5971517743176915]
We introduce 2SED Fractional-Order Gradient Descent (2SEDFOSGD), a novel method that automatically enhances the fractional exponent in a data-driven manner.<n>We demonstrate how this dimension-aware adaptation retains the benefits of fractional memory while averting the sluggish or unstable behaviors frequently observed in naive fractional SGD.
arXiv Detail & Related papers (2025-03-17T22:57:37Z) - Unraveling Zeroth-Order Optimization through the Lens of Low-Dimensional Structured Perturbations [33.38543010618118]
Zeroth-order (ZO) optimization has emerged as a promising alternative to gradient-based backpropagation methods.<n>We show that high dimensionality is the primary bottleneck and introduce the notions of textit and textiteffective perturbations to explain how structured perturbations reduce gradient noise and accelerate convergence.
arXiv Detail & Related papers (2025-01-31T12:46:04Z) - Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
We investigate the roles of gradient normalization and clipping in ensuring the convergence of Gradient Descent (SGD) under heavy-tailed noise.
Our work provides the first theoretical evidence demonstrating the benefits of gradient normalization in SGD under heavy-tailed noise.
We introduce an accelerated SGD variant incorporating gradient normalization and clipping, further enhancing convergence rates under heavy-tailed noise.
arXiv Detail & Related papers (2024-10-21T22:40:42Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - SketchySGD: Reliable Stochastic Optimization via Randomized Curvature
Estimates [19.420605210427635]
SketchySGD improves upon existing gradient methods in machine learning by using randomized low-rank approximations to the subsampled Hessian.
We show theoretically that SketchySGD with a fixed stepsize converges linearly to a small ball around the optimum.
In the ill-conditioned setting we show SketchySGD converges at a faster rate than SGD for least-squares problems.
arXiv Detail & Related papers (2022-11-16T01:05:41Z) - NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer [45.47667026025716]
We propose a novel, robust and accelerated iteration that relies on two key elements.
The convergence and stability of the obtained method, referred to as NAG-GS, are first studied extensively.
We show that NAG-arity is competitive with state-the-art methods such as momentum SGD with weight decay and AdamW for the training of machine learning models.
arXiv Detail & Related papers (2022-09-29T16:54:53Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Accelerating Stochastic Probabilistic Inference [1.599072005190786]
Variational Inference (SVI) has been increasingly attractive thanks to its ability to find good posterior approximations of probabilistic models.
Almost all the state-of-the-art SVI algorithms are based on first-order optimization and often suffer from poor convergence rate.
We bridge the gap between second-order methods and variational inference by proposing a second-order based variational inference approach.
arXiv Detail & Related papers (2022-03-15T01:19:12Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
The proposed algorithm converges to the correct distribution with a controllable bias under mild conditions.
We show that the proposed algorithm canally converge to the correct distribution with a controllable bias under mild conditions.
arXiv Detail & Related papers (2020-06-29T20:57:20Z) - Hessian-Free High-Resolution Nesterov Acceleration for Sampling [55.498092486970364]
Nesterov's Accelerated Gradient (NAG) for optimization has better performance than its continuous time limit (noiseless kinetic Langevin) when a finite step-size is employed.
This work explores the sampling counterpart of this phenonemon and proposes a diffusion process, whose discretizations can yield accelerated gradient-based MCMC methods.
arXiv Detail & Related papers (2020-06-16T15:07:37Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.