論文の概要: Adversarial Sample Generation for Anomaly Detection in Industrial Control Systems
- arxiv url: http://arxiv.org/abs/2505.03120v1
- Date: Tue, 06 May 2025 02:27:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.169183
- Title: Adversarial Sample Generation for Anomaly Detection in Industrial Control Systems
- Title(参考訳): 産業制御システムにおける異常検出のための逆サンプル生成
- Authors: Abdul Mustafa, Muhammad Talha Khan, Muhammad Azmi Umer, Zaki Masood, Chuadhry Mujeeb Ahmed,
- Abstract要約: 我々はJacobian Saliency Map Attack (JSMA) を用いて敵のサンプルを生成する。
本研究は,産業制御システムに対する幅広い実攻撃に対処するために,敵サンプルの一般化と拡張性を検証した。
敵のサンプルを用いて訓練されたモデルは、訓練中に使用されていない実世界の攻撃データに対して95%の精度で攻撃を検出した。
- 参考スコア(独自算出の注目度): 2.6513941799808873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML)-based intrusion detection systems (IDS) are vulnerable to adversarial attacks. It is crucial for an IDS to learn to recognize adversarial examples before malicious entities exploit them. In this paper, we generated adversarial samples using the Jacobian Saliency Map Attack (JSMA). We validate the generalization and scalability of the adversarial samples to tackle a broad range of real attacks on Industrial Control Systems (ICS). We evaluated the impact by assessing multiple attacks generated using the proposed method. The model trained with adversarial samples detected attacks with 95% accuracy on real-world attack data not used during training. The study was conducted using an operational secure water treatment (SWaT) testbed.
- Abstract(参考訳): 機械学習(ML)ベースの侵入検知システム(IDS)は敵攻撃に対して脆弱である。
悪意のあるエンティティがそれらを悪用する前に、IDSは敵の例を認識することを学習することが不可欠である。
本稿では,ジャコビアン・サリエンシ・マップ・アタック(JSMA)を用いて,敵対的なサンプルを生成した。
我々は,産業制御システム(ICS)に対する幅広い実攻撃に対処するために,敵サンプルの一般化と拡張性を検証した。
提案手法を用いた複数攻撃の評価により,その影響を評価した。
敵のサンプルを用いて訓練されたモデルは、訓練中に使用されていない実世界の攻撃データに対して95%の精度で攻撃を検出した。
本研究は, 運転安全水処理(SWaT)試験台を用いて行った。
関連論文リスト
- usfAD Based Effective Unknown Attack Detection Focused IDS Framework [3.560574387648533]
Internet of Things(IoT)とIndustrial Internet of Things(IIoT)は、サイバー脅威の増加につながっている。
10年以上にわたり、研究者は侵入検知システム(IDS)を開発するための教師付き機械学習技術を模索してきた。
既知のデータセット上でトレーニングされ、テストされたIDSは、ゼロデイまたは未知の攻撃を検出するのに失敗する。
我々は,攻撃の訓練サンプルを必要としない,半教師付き学習に基づくIDSのための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-03-17T11:49:57Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
アドリアックは、入力サンプルに小さな、知覚不能な摂動を挿入し、ディープラーニングモデルの出力に大きな、望ましくない変化を引き起こす。
本研究は, 対人攻撃に最も影響を受けやすいサンプルを同定することを目的とした, サンプル攻撃可能性の概念を紹介する。
本研究では,未知のターゲットモデルに対する未知のデータセットにおいて,逆攻撃可能で頑健なサンプルを識別するディープラーニングベースの検出器を提案する。
論文 参考訳(メタデータ) (2023-01-30T13:58:14Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
この研究は、特定の攻撃アルゴリズムを知らずにASVの敵防衛を行う最初の試みの一つである。
本研究の目的は,1) 対向摂動浄化と2) 対向摂動検出の2つの視点から対向防御を行うことである。
実験の結果, 検出モジュールは, 約80%の精度で対向検体を検出することにより, ASVを効果的に遮蔽することがわかった。
論文 参考訳(メタデータ) (2021-06-01T07:10:54Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z) - Adversarial Attacks on Machine Learning Cybersecurity Defences in
Industrial Control Systems [2.86989372262348]
本稿では, 教師付きモデルを対象として, 対戦型サンプルを生成することで, 対戦型学習をいかに活用できるかを考察する。
また、このようなサンプルが敵の訓練を用いて教師付きモデルの堅牢性をサポートする方法についても検討している。
その結果,広く使用されている2種類の分類器であるランダムフォレスト(Random Forest)とJ48(J48)の分類性能は,逆に16~20ポイント低下した。
論文 参考訳(メタデータ) (2020-04-10T12:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。