Learn to Swim: Data-Driven LSTM Hydrodynamic Model for Quadruped Robot Gait Optimization
- URL: http://arxiv.org/abs/2505.03146v1
- Date: Tue, 06 May 2025 03:42:16 GMT
- Title: Learn to Swim: Data-Driven LSTM Hydrodynamic Model for Quadruped Robot Gait Optimization
- Authors: Fei Han, Pengming Guo, Hao Chen, Weikun Li, Jingbo Ren, Naijun Liu, Ning Yang, Dixia Fan,
- Abstract summary: This paper presents a network-based Fluid Experiment Data-Driven model (FED-LSTM) for predicting unsteady, nonlinear hydrodynamic forces on an underwater quadruped robot.<n>We trained on experimental data from leg force and body drag tests conducted in both a recirculating water tank and a towing tank.<n>The model demonstrates superior accuracy and adaptability in capturing complex fluid dynamics.
- Score: 3.0610505741393057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a Long Short-Term Memory network-based Fluid Experiment Data-Driven model (FED-LSTM) for predicting unsteady, nonlinear hydrodynamic forces on the underwater quadruped robot we constructed. Trained on experimental data from leg force and body drag tests conducted in both a recirculating water tank and a towing tank, FED-LSTM outperforms traditional Empirical Formulas (EF) commonly used for flow prediction over flat surfaces. The model demonstrates superior accuracy and adaptability in capturing complex fluid dynamics, particularly in straight-line and turning-gait optimizations via the NSGA-II algorithm. FED-LSTM reduces deflection errors during straight-line swimming and improves turn times without increasing the turning radius. Hardware experiments further validate the model's precision and stability over EF. This approach provides a robust framework for enhancing the swimming performance of legged robots, laying the groundwork for future advances in underwater robotic locomotion.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Update hydrological states or meteorological forcings? Comparing data assimilation methods for differentiable hydrologic models [0.923607423080658]
Data assimilation (DA) enables hydrologic models to update their internal states using near-real-time observations for more accurate forecasts.<n>We developed variational DA methods for differentiable models, including optimizing adjusters for just precipitation data.<n>Our DA framework does not need systematic training data and could serve as a practical DA scheme for whole river networks.
arXiv Detail & Related papers (2025-02-23T05:08:05Z) - Underwater Soft Fin Flapping Motion with Deep Neural Network Based Surrogate Model [0.31457219084519]
This study presents a novel framework for precise force control of fin-actuated underwater robots by integrating a deep neural network (DNN)-based surrogate model with reinforcement learning (RL)<n>To address the complex interactions with the underwater environment and the high experimental costs, a surrogate model acts as a simulator for enabling efficient training for the RL agent.
arXiv Detail & Related papers (2025-02-05T12:57:53Z) - Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation [2.432448600920501]
This paper introduces the Fine-Tuning Hybrid Dynamics (FTHD) method, which integrates supervised and unsupervised Physics-Informed Neural Networks (PINNs)
FTHD fine-tunes a pre-trained Deep Dynamics Model (DDM) using a smaller training dataset, delivering superior performance compared to state-of-the-art methods.
An Extended Kalman Filter (EKF) is embedded within FTHD to effectively manage noisy real-world data, ensuring accurate denoising.
Results demonstrate that the hybrid approach significantly improves parameter estimation accuracy, even with reduced data, and outperforms existing models.
arXiv Detail & Related papers (2024-09-29T10:33:07Z) - Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.<n>Three autoregressive models were compared: a hybrid model (POD-DL) that combines proper decomposition (POD) with a long-short term memory (LSTM) layer, a convolutional autoencoder combined with a convolutional LSTM layer, and a variational autoencoder (VAE) combined with a ConvLSTM layer.<n>While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models [23.480913364381664]
Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers.
We present a novel, fully differentiable hybrid approach to FSI that combines a 2D numerical simulation for the deformable solid structure of the swimmer.
We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer.
arXiv Detail & Related papers (2022-03-30T15:21:44Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.