A Symbolic and Statistical Learning Framework to Discover Bioprocessing Regulatory Mechanism: Cell Culture Example
- URL: http://arxiv.org/abs/2505.03177v1
- Date: Tue, 06 May 2025 04:39:34 GMT
- Title: A Symbolic and Statistical Learning Framework to Discover Bioprocessing Regulatory Mechanism: Cell Culture Example
- Authors: Keilung Choy, Wei Xie, Keqi Wang,
- Abstract summary: This paper introduces a symbolic and statistical learning framework to identify key regulatory mechanisms and model uncertainty.<n>A Metropolis-adjusted Langevin algorithm with adjoint sensitivity analysis is developed for posterior exploration.<n>An empirical study demonstrates its ability to recover missing regulatory mechanisms and improve model fidelity under datalimited conditions.
- Score: 2.325005809983534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bioprocess mechanistic modeling is essential for advancing intelligent digital twin representation of biomanufacturing, yet challenges persist due to complex intracellular regulation, stochastic system behavior, and limited experimental data. This paper introduces a symbolic and statistical learning framework to identify key regulatory mechanisms and quantify model uncertainty. Bioprocess dynamics is formulated with stochastic differential equations characterizing intrinsic process variability, with a predefined set of candidate regulatory mechanisms constructed from biological knowledge. A Bayesian learning approach is developed, which is based on a joint learning of kinetic parameters and regulatory structure through a formulation of the mixture model. To enhance computational efficiency, a Metropolis-adjusted Langevin algorithm with adjoint sensitivity analysis is developed for posterior exploration. Compared to state-of-the-art Bayesian inference approaches, the proposed framework achieves improved sample efficiency and robust model selection. An empirical study demonstrates its ability to recover missing regulatory mechanisms and improve model fidelity under data-limited conditions.
Related papers
- A Novel Framework for Learning Stochastic Representations for Sequence Generation and Recognition [0.0]
The ability to generate and recognize sequential data is fundamental for autonomous systems operating in dynamic environments.<n>We propose a novel Recurrent Network with Parametric Biases (RNNPB)<n>Our approach provides a framework for modeling temporal patterns and advances the development of robust and systems in artificial intelligence and robotics.
arXiv Detail & Related papers (2024-12-30T07:27:50Z) - Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
We develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biomedical datasets.<n>Key theoretical contribution is the structural sparsity of causal connections between modalities.<n>Results on a real-world human phenotype dataset are consistent with established biomedical research.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network [2.6130735302655554]
We introduce an adjoint sensitivity approach to expedite the learning of mechanistic model parameters.
In this paper, we consider enzymatic analysis (SA) representing a multi-scale bioprocess mechanistic model.
arXiv Detail & Related papers (2024-05-07T05:06:45Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
This paper develops an efficient Bayesian inference approach for partially observed enzymatic reaction network (SRN)
An interpretable linear noise approximation (LNA) metamodel is proposed to approximate the likelihood of observations.
An efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of Markov Chain Monte Carlo.
arXiv Detail & Related papers (2024-05-05T01:54:21Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - A Framework for Strategic Discovery of Credible Neural Network Surrogate Models under Uncertainty [0.0]
This study presents the Occam Plausibility Algorithm for surrogate models (OPAL-surrogate)
OPAL-surrogate provides a systematic framework to uncover predictive neural network-based surrogate models.
It balances the trade-off between model complexity, accuracy, and prediction uncertainty.
arXiv Detail & Related papers (2024-03-13T18:45:51Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Opportunities of Hybrid Model-based Reinforcement Learning for Cell
Therapy Manufacturing Process Development and Control [6.580930850408461]
Key challenges of cell therapy manufacturing include high complexity, high uncertainty, and very limited process data.
We propose a framework named "hybridRL" to efficiently guide process development and control.
In the empirical study, cell therapy manufacturing examples are used to demonstrate that the proposed hybrid-RL framework can outperform the classical deterministic mechanistic model assisted process optimization.
arXiv Detail & Related papers (2022-01-10T00:01:19Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.