Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network
- URL: http://arxiv.org/abs/2405.04011v2
- Date: Fri, 28 Jun 2024 21:50:16 GMT
- Title: Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network
- Authors: Keilung Choy, Wei Xie,
- Abstract summary: We introduce an adjoint sensitivity approach to expedite the learning of mechanistic model parameters.
In this paper, we consider enzymatic analysis (SA) representing a multi-scale bioprocess mechanistic model.
- Score: 2.6130735302655554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the pressing challenges in the digital twin development for biomanufacturing systems, we introduce an adjoint sensitivity analysis (SA) approach to expedite the learning of mechanistic model parameters. In this paper, we consider enzymatic stochastic reaction networks representing a multi-scale bioprocess mechanistic model that allows us to integrate disparate data from diverse production processes and leverage the information from existing macro-kinetic and genome-scale models. To support forward prediction and backward reasoning, we develop a convergent adjoint SA algorithm studying how the perturbations of model parameters and inputs (e.g., initial state) propagate through enzymatic reaction networks and impact on output trajectory predictions. This SA can provide a sample efficient and interpretable way to assess the sensitivities between inputs and outputs accounting for their causal dependencies. Our empirical study underscores the resilience of these sensitivities and illuminates a deeper comprehension of the regulatory mechanisms behind bioprocess through sensitivities.
Related papers
- Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
This paper develops an efficient Bayesian inference approach for partially observed enzymatic reaction network (SRN)
An interpretable linear noise approximation (LNA) metamodel is proposed to approximate the likelihood of observations.
An efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of Markov Chain Monte Carlo.
arXiv Detail & Related papers (2024-05-05T01:54:21Z) - FIMBA: Evaluating the Robustness of AI in Genomics via Feature
Importance Adversarial Attacks [0.0]
This paper demonstrates the vulnerability of AI models often utilized downstream tasks on recognized public genomics datasets.
We undermine model robustness by deploying an attack that focuses on input transformation while mimicking the real data and confusing the model decision-making.
Our empirical findings unequivocally demonstrate a decline in model performance, underscored by diminished accuracy and an upswing in false positives and false negatives.
arXiv Detail & Related papers (2024-01-19T12:04:31Z) - Modelling Cellular Perturbations with the Sparse Additive Mechanism
Shift Variational Autoencoder [6.352775857356592]
We propose the Sparse Additive Mechanism Shift Variational Autoencoder, SAMS-VAE, to combine compositionality, disentanglement, and interpretability for perturbation models.
SAMS-VAE models the latent state of a perturbed sample as the sum of a local latent variable capturing sample-specific variation and sparse global variables of latent intervention effects.
We evaluate SAMS-VAE both and qualitatively on a range of tasks using two popular single cell sequencing datasets.
arXiv Detail & Related papers (2023-11-05T23:37:31Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Dynamic Bayesian Network Auxiliary ABC-SMC for Hybrid Model Bayesian
Inference to Accelerate Biomanufacturing Process Mechanism Learning and
Robust Control [2.727760379582405]
We present a knowledge graph hybrid model characterizing complex causal interdependencies of underlying bioprocessing mechanisms.
It can faithfully capture the important properties, including nonlinear reactions, partially observed state, and nonstationary dynamics.
We derive a posterior distribution model uncertainty, which can facilitate mechanism learning and support robust process control.
arXiv Detail & Related papers (2022-05-05T02:54:21Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z) - Interpretable multimodal fusion networks reveal mechanisms of brain
cognition [26.954460880062506]
We develop an interpretable multimodal fusion model, gCAM-CCL, which can perform automated diagnosis and result interpretation simultaneously.
We validate the gCAM-CCL model on a brain imaging-genetic study, and show gCAM-CCL's performed well for both classification and mechanism analysis.
arXiv Detail & Related papers (2020-06-16T18:52:50Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.